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The main goal of this paper is to study the safety factor (of limit load) problem related to the shallow 
flow avalanche of a visco-plastic fluid/solid with heterogeneous thickness over a plane slope. The 
first objective is to find the appropriate functional space of the problem and to prove the existence of 
a onset velocity field. The second objective of the paper is to propose a numerical strategy to solve 
the limit load problem and to characterize the flow onset of the avalanche. We introduce an 
optimization problem (called the limit load or safety factor problem) to study the link between the 
yield limit, the external forces and the thickness distributions for which the shallow flow avalanche of 
a visco-plastic fluid/solid does, or does not occur. This optimization problem is reconsidered in the 
space of bounded deformations functions and the velocity boundary conditions are relaxed. We prove 
that the initial optimization problem is not changed and the reformulated safety factor problem has a 
least a solution, modelling the onset of the avalanche. We have developed here a DVDS-type 
numerical technique to solve the safety factor problem through a shape optimization problem. The 
proposed numerical method makes use of Fourier level set description of the subdomain and of a 
genetic algorithm in solving the non convex and non-smooth global optimization problem. The 
proposed numerical approach is illustrated with some numerical simulations of avalanches involving 
a Bingham circular dome, a Druker-Prager square dome on a plane slope, and a thick Bingham fluid 
over an obstacle. 

Key words:  shallow flow, visco-plastic fluid, flow onset, safety factor, limit load, bounded 
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1. INTRODUCTION 

The understanding of the physics of the avalanche onset, related to the shallow flow of soils, snow or 
other geomaterials over an inclined surface, is an important issue in geophysics and engineering (see for 
instance [1]). Since the problem is three dimensional, and the behaviour of the material is best represented by 
visco-plastic fluid/solid type models, the mathematical and numerical modelling is very complex and poses 
many challenges. That is why, reduced 2-D models, called also Saint-Venant models, are generally 
considered. Such models are able to capture the principal features of the flow (onset, dynamic propagation 
and arrest).  

Very recently, a new Saint-Venant type (shallow flow) model for visco-plastic fluids/solids in 
frictional contact with a plane slope was obtained in [7]. This model describes the onset of the avalanche 
through a criterion which relates the yield limit (material resistance) to the external forces distribution. The 
main problem is to find the maximum multiple of the force distribution that the fluid/solid can withstand 
without collapsing, and the collapse avalanche flow. In many applications, the strains are localized on some 
surfaces where the velocity of the collapse flow exhibits discontinuities. That is why, the onset modelling 
(called also limit analysis) was and remains a difficult mathematical and numerical problem.  

The main goal of this paper is to study the safety factor (or limit load) problem related to the shallow 
flow of a visco-plastic fluid/solid with heterogeneous thickness over a plane slope. The first objective is to 
find the appropriate functional space of the problem and to prove the existence of a onset velocity field. 
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The plastic dissipation functional, involved in the limit load problem, is non smooth, and non coercive 
in classical Sobolev spaces.  That is why, we have to consider it in the space of bounded deformation 
functions (i.e., the space of velocities which have their rate of deformation in the space of bounded 
measures) introduced in [11, 12].  

 The second objective of the paper is to propose a numerical strategy to solve the limit load problem 
and to get the onset flow field of the avalanche. The numerical methods in limit analysis are based on the 
discretization of the kinematic or static variational principles using the finite element method technics and 
the convex and linear programming. The first results were obtained in [4, 2] while the literature on FE to 
limit analysis is very extensive. Despite a great progress in the last decades (X-FEM, re-meshing techniques, 
...), the finite element method remains associated to continuous fields and it is not so well adapted for 
modelling strain localization and velocities discontinuities on unknown surfaces. For that, we will use here 
the discontinuous velocity domain splitting (DVDS) method, introduced in [6]. DVDS is a mesh free method 
which does not use a finite element discretization of the solid. It focuses on the strain localization and 
completely neglect the bulk deformations. The limit load problem is thus reduced to the minimization of a 
mesh free functional (plastic dissipation power) depending on a domain partition. The avalanche collapse 
velocity field, which is discontinuous, is associated to the domain partition and to a rigid flow. It has 
localized deformations only, located at the boundary of the sub-domain.  

 The main novelty of this paper consists in finding the appropriate functional space of the limit load 
problem and in obtaining an existence result for the onset velocity field. As far as we know, the use of a 
mesh free technique (DVDS) for a numerical approach of the safety factor problem is also new. 

2. MATHEMATICAL APPROACH OF THE FLOW ONSET 

When modelling landslides, or snow avalanches, the fluid/solid is totally at rest (blocked) in its natural 
configuration and the beginning of a flow can be seen as a ''disaster''. In a solid mechanics context the onset 
of the flow is studied through the limit analysis which is based on a very idealized representation of a 
perfectly plastic material subjected to slowly increasing loads. The main problem in limit analysis is to find 
the maximum multiple of the force distribution, that the solid/fluid can withstand without flowing 
(collapsing), and the associated (collapse) flow field. The final result of such an analysis is a non-
dimensional number called "limit load" (or "safety factor"). It requires only the yield limit distribution of the 
material and the geometry of the associated boundary value problem.   

The avalanche shallow model used here was derived in [7] under the following asymptotic 
assumptions: the normal components of the velocity as well as the tangential stresses are small, i.e. they are 
of the same order  1ε << , a small parameter representing the ratio aspect of the thickness.  

Following [7] we consider a visco-plastic fluid/solid occupying a domain D 3R⊂  (Fig. 1). For a plane 
slope of angle α the domain can be described through D { }( , ); ,0 ( )x z x z h x= ∈Ω ≤ ≤ , where 2RΩ⊂  is a 
fixed bounded domain and ( ) 0h x ≥ is the thickness of the fluid and x = (x1, x2 ). All over this paper the 
space and time coordinates, as well as all mechanical fields, are non dimensional. The boundary ∂D is 
divided into three disjoint parts ∂D  b s l= Γ ∪Γ ∪Γ . We define by   
Γs = (x, z); x ∈Ω, z = h(x)> 0{ } ,Γb = (x, 0); x ∈Ω, h(x) > 0{ }, the free and the bottom boundaries while 

the lateral surface is Γl = (x, z); x ∈∂Ω, h(x)> z > 0{ } . We denote by n the outward unit normal on ∂D. 
On the boundary Γb   , which corresponds to the bottom part of the fluid, the visco-plastic fluid is in contact 
with Coulomb friction with the slope plane z = 0 (with Cf  the friction coefficient) and since the (unknown) 
boundary Γs  is a free surface we assume a stress free condition.  For the sake of simplicity we will suppose 
that h(x) > 0 for all x ∈ ∂Ω, and the lateral boundary Γl (t)is splinted into two parts:  

Γl
0 = (x, z); x ∈ Γ0, h(x)> z > 0{ } and Γl

1 = (x, z); x ∈ Γ1,h(x)> z > 0{ }  
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following a partition of 0 1∂Ω = Γ ∪Γ . We will consider two kinds of boundary conditions: adherence on Γl
1  

and stress free on Γl
0 . 

We introduce here the “safety factor” (or limit load) to study the link between the yield limit 
distribution and the external forces distribution for which the shallow flow avalanche of the visco-plastic 
fluid does or does not occur.  

In order to get the characterization of the fact that the fluid is totally at rest in its initial configuration 
we have to check whenever ( ) , ( ) 0h t h v t≡ ≡  is a solution of the time evolution variational inequality 
derived in [7]. We get the following stationary inequality 

2shallow 2
0 12 2

1 cos( ) 1( ) (div ) d d sin( ) cos( )div d
2 2fh D x hC x h h x

Fr FrΩ Ω Ω

γ α γ ⎡ ⎤⎡ ⎤κ Ψ + Ψ + ρ Ψ ≥ ρ α ψ + α Ψ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ ∫  (1)

for all Ψ ∈V =: Ψ :Ω→ R2;Ψ = 0{  on Γ0 } , where ρ  is the mass density, γ  is the gravitational 

acceleration. shallow
0κ  is the distribution  of  the shallow yield limit  in the rest configuration given by 

shallow 0
0 2 cos

2
h

Fr
μ

κ = κ + ρ γ α , where 0κ  the cohesion, μ  the internal frictional coefficient and Fr2  is the 

Froude number. 
Note that the problem (1) is rate independent which means that the viscous effects, related to the rate 

dependency, will disappear in the optimization problem modelling the avalanche onset. This fact has 
important mathematical consequences for the regularity of the solution. As we can see in the next, the 
solutions of the rigid-plastic shallow flow problem (1) have spatial discontinuities.  

Let write now the variational inequality (1) to get the safety factor (or limit load) problem. We denote 
by 2 2: SR R×

+φ →   
2 21( ) : (trace ) , ( ) : ( ( ))d d ,

2
D D D G g D x q x

Ω Ω

⎡ ⎤φ = + Ψ = φ Ψ + Ψ⎣ ⎦ ∫ ∫  

the shallow plastic strain rate potential and by G  the total dissipation power (plastic and frictional 

dissipation), where shallow
0:g h= κ  and 2

cos:
Fr fq hCγ α

= ρ . Denoting by 1 2: sin
Fr

F hγ
= α , 2

2: cos
2Fr

b hγρ
= α , the 

 
Fig. 1 – 3D representation of the fluid domain D  flowing on a plane slope of angle α, the bottom part Γb  and the Ox1z  section 

described through the thickness function (x1, x2 )→ z = h(x1, x2 ). 
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external forces dissipation power reads 1 1( ) : ( div( ))dL F b x
Ω

Ψ = ψ + Ψ∫ . If we introduce the safety factor (or 

limit load) ∗λ  by  

, ( ) 1
inf ( ),

V L
G∗

Ψ∈ Ψ =
λ = Ψ  (2)

then we can see that (1) is verified (i.e., the solid/fluid is at rest) if and only if 1∗λ ≥ . For geological 
structures which are at rest in their natural configuration we can formulate the following flow/no flow 
criterion of an avalanche onset: 

The shallow flow (avalanche) of the visco-plastic fluid/solid starts if and only if  1∗λ < . The plastic 
dissipation functional involved in (2) is non-smooth, and non coercive in the classical Sobolev spaces. 
Moreover, the above formula of the plastic dissipation power G  is valid only for smooth velocity fields 
from the Sobolev space V . For non-smooth (discontinuous) velocities the gradient operator involved in the 
definition of the rate of deformation tensor has to be understood in the sense of distributions.  As it follows 
from [8] the strain rate D(Ψ) belongs to the space of bounded measures M 1(Ω)  and the associated 
functional space is the space of bounded deformations functions  

BD(Ω) =: Ψ :Ω→ R2;Ψ ∈ L1(Ω)2, D(Ψ)∈ M 1(Ω)2×2{ },  

introduced and discussed in [11, 12, 13]. We assume the following regularity conditions: 

b, g ∈C0 (Ω
−

) ,    0( ) 0,g x g≥ >  1, ( )q F L∞∈ Ω      0.q ≥  

Since ( )D D→φ  is an equivalent norm on R2×2  and satisfies the conditions of Theorem 4.1, Chapter 2 from 
[12], ( ( ))Dφ Ψ  is a bounded positive measure on Ω. We can use this to extend the functionals G  and L  for 
all Ψ ∈ BD(Ω) through the formula  

( ) ( ( )) d ,G gd D q x
Ω Ω

Ψ = φ Ψ + Ψ∫ ∫  1 1( ) dL F x bd
Ω Ω

Ψ = ψ +∫ ∫ div( ).Ψ     

In order to handle the velocity boundary conditions on Γ0  for non-smooth velocity fields, we have to add it 
as additional terms in the functionals G  and L . These terms are modelling a discontinuity surface of a non-
smooth velocity field located at the boundary Γ0 . To do that we introduce 

0

2 2
0

1( ) : 3( ) d
2

G g n S
Γ

⎡ ⎤Ψ = Ψ + Ψ ⋅⎣ ⎦∫ ,   G(Ψ)=:G(Ψ)+G0 (Ψ),   
0

0 ( ) : dL b n S
Γ

Ψ = − Ψ ⋅∫ , 

L(Ψ) =: L(Ψ)+ L0 (Ψ), 

and we remark that G(Ψ)=G(Ψ)  and L(Ψ) = L(Ψ)  for all Ψ ∈V , which means that  

( ), ( ) 1
inf ( )

BD L
G ∗

Ψ∈ Ω Ψ =
Ψ ≤ λ . 

We proved that the above relaxation of the boundary conditions does not change the initial optimization 
problem.  

Theorem 2.1. We have 

inf
Ψ∈BD(Ω),L(Ψ )=1

G(Ψ) = λ∗ = inf
Ψ∈V ,L(Ψ )=1

G(Ψ). (3)

Moreover, we also have the following existence result for the relaxed optimization problem in BD(Ω). 
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Theorem 2.2.  Let suppose that meas(Γ0 ) > 0 . Then there exists an onset velocity field v∗ ∈ BD(Ω)  

with L(v∗) =1 solution of the relaxed optimization problem 

( ), ( ) 1
( ) min ( ).

BD L
G v G∗ ∗

Ψ∈ Ω Ψ =
= λ = Ψ  

3. FLOW ONSET NUMERICAL APPROACH AND SIMULATIONS 

Almost all nontrivial known solutions of the limit load problems have spatial discontinuities. This is 
not so surprising if we have in mind that the extremal problem (2) models phenomena as ductile fracture or 
strain localization. For that, to solve the limit load extremal problem (3), involving G , we make use here of 
a mesh free method which does not use a finite element discretization of the solid. This new limit analysis 
method is called discontinuous velocity domain splitting (DVDS). Even if a detailed description of DVDS 
can be found in [6], we shall briefly recall it here.  

Let us define V the set of DVDS velocity fields V: = { r1ω ; ω⊂ Ω , r ∈ R }, where 1ω  is the 
characteristic function of a subdomain ω⊂ Ω  (i.e. 1 ( ) 1xω =  if x∈ω  and 1 ( ) 0xω =  if x∉ω ). Since the 
space of bounded deformation BD(Ω) include functions with spatial discontinuities, we have V ( )BD⊂ Ω , 

and we can take test functions from V  in (3) to get an upper-bound 1
∗λ of :∗λ  

 

1 1 , ( 1 ) 1 ( ), ( ) 1
inf ( ) inf ( ).

r V L r BD L
G G

ω ω

∗ ∗

∈ = Ψ∈ Ω Ψ =
λ = Ψ ≥ λ = Ψ  

For DVDS velocity fields the plastic dissipation involved above can be computed explicitly (we use the same 
arguments as in the proof of Theorem 3.1) from  ω  and r.  Denote by ( , )J rω the following shape dependent 
functional 

( )
1

1

2 2

\

1 1 \

1 3 d d( 1 ) 2( , ) : ,
( 1 ) d d

g r r n S q r xG rJ r
L r F r x br n S

∂ω Γ ωω

ω +
ω ∂ω Γ +

⎡ ⎤+ ⋅ +⎣ ⎦ω = =
⎡ ⎤ ⎡ ⎤+ ⋅⎣ ⎦ ⎢ ⎥⎣ ⎦

∫ ∫
∫ ∫

 

where s[ ]+ = (s+ s ) / 2 is the positive part, we get 1 ,
: inf ( , ) .

r R
J r∗ ∗

ω⊂Ω ∈
λ = ω ≥ λ  The DVDS optimal value 1

∗λ  

is very close to the limit load .∗λ  For the anti-plane flow DVDS gives an exact evaluation of the safety 
factor, i.e. λ∗

1 = λ
∗ [5]. Moreover, in all in-plane flows problems where the safety factor is known, the above 

upper-bound λ∗
1 is very close (less than 2–5 %) to the global minimum ∗λ  [6].  

 From the optimal set ∗ω  and the optimal rigid flow r∗ 

,
( , ) : min ( , )

r R
J r J r∗ ∗

ω⊂Ω ∈
ω = ω  

one can construct the avalanche onset velocity filed : 1v r ∗
∗ ∗

ω
= . The boundary of ∗ω , delimiting the flow 

zone from the non-flow zone, where the onset velocity v∗ is discontinuous, represents the collapse fracture 
surface. The study of the existence and of the uniqueness of the optimal set ∗ω  and the optimal rigid flow r∗ 
is beyond of the scope of the present paper.  

For the numerical minimization of the functional J, which depends on the subdomain ω  and on the 
rigid motion r , our approach consists in the following principal ingredients: the description of the 
subdomain ω  with a small number of parameters; the description of the vector field r; the reconstruction of 
the topology of ω  and the computation of the cost function J. 
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Finally, for the global minimization of the cost functional J we have used standard genetic algorithm 
techniques (see [10] for details on stochastic optimization methods). 

 For all the following numerical simulations we have chosen the domain Ω= [0,1]×[0,1] , the slope 
angle 45α = , the density 1ρ = and the gravitational acceleration 10γ = . All the integrals involved in the 
cost function J  were done on 50× 50 points grid. In the first example we have considered a circular dome, 

given by the following thickness distribution: 2 2
1 2 1 01 2 02( , ) 1 cos ( ) ( )D eh x x h x x x x hπ⎛ ⎞= + − + − +⎜ ⎟δ⎝ ⎠

 if 

1 2 0( , ) ( , )x x B x∈ δ ,   and  h(x1, x2 ) = heelse with 0 (0.5,0.5), 0.25x = δ =  and hD = 0.125, he = 0.01. 
For a Bingham fluid ( 00, 10μ = κ = ) with no friction (Cf = 0) we have obtained the safety factor 

0.6464∗λ = .  

 

Fig. 2 – Left: the distribution of the thickness function for the square dome geometry; right: the velocity onset obtained  
with our approach. 

The avalanche onset velocity v∗ , plotted in Fig. 2 (left), shows that the fracture is circular and occurs at 
the base of the dome. In order to compare this result with another method we have computed the dynamic 
onset of the flow for a visco-plastic fluid using the finite element/finite volume numerical method described 
in [7].  In Fig. 2 (right), we have plotted the norm of the velocity field computed at the beginning of the flow. 
We can see that the onset region described by our approach is the same as for the dynamic computations. In 
the second simulation we have considered a square dome (Fig. 3 (left)), given by:  

1 2 1 01 2 02( , ) 1 cos ( ) 1 cos ( )D eh x x h x x x x h⎛ ⎞⎛ ⎞π π⎛ ⎞ ⎛ ⎞= + − + − +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟δ δ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
, if 1 01 2 02,x x x x− − < δ  

and  h(x1, x2 ) = he else, for a Drucker-Prager fluid ( 0tan30 , 0.1μ = κ = ) with no friction (Cf = 0). We have 

obtained the safety factor 0.3053∗λ =  and the onset velocity is plotted is Fig. 3 right. We remark that the 
avalanche fracture, which is a rounded rectangle, occurs at the base of the dome. In the third simulation we 
have considered a circular dome over a thick uniform fluid in the presence of a circular obstacle 

0( , )o oB B x= δ  Fig. 4 (left). The obstacle is located at 0
0 (0.5,0)x = and has a radius of 0 0.2δ = , while the 

thickness function h is the same as in the first simulation, but with he = 0.1, ten times larger. It is more 
suitable to model the obstacle by the penalization of the yield limit 0κ . For that, we have considered the 
same domain Ω= [0,1]×[0,1], as before, but with 0 1κ = on Ω \ B  outside the obstacle and 0 50κ =  inside 
the obstacle Ω∩B . We have found the safety factor 3.4713∗λ =  and the onset velocity v∗ is plotted is 
Fig. 4 (right). We remark that the avalanche fracture is rather different form the dome over a thin film, 
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computed in the first simulation. The fracture is close to the corners of the domain and avoids the circular 
obstacle B .  

 
 
 

 

 
Fig. 3 – Left: the distribution of the thickness function for the square dome geometry; right: the velocity onset obtained  

with our approach. 

 
 
 
 

 

 
Fig. 4 – Left: the distribution of the thickness function for a thick fluid with an obstacle; right: the velocity onset obtained  

with our approach 
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Note added in proof. The article [8] studies the modelling of the onset of a shallow avalanche 
(soils, snow or other geomaterials) over a general basal topography. To distinguish if an avalanche occurs or 
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not, it is used a criterion similar with that from the present paper. The numerical DVDS method is 
adapted accordingly. 

REFERENCES 

1. Ch. ANCEY, Plasticity and geophysical flows: A review, Journal of Non-Newtonian Fluid Mechanics, 142, pp. 4–35, 2007. 
2. P. G. HODGE and T. BELYTSCHKO, Numerical methods for the limit analysis of plates, J. Appl. Mech., 35, pp. 796–802, 

1968. 
3. R. HASSANI, I. R. IONESCU, T. LACHAND-ROBERT, Shape optimization and supremal functionals in landslides 

modelling, Mathematical Modelling and numerical analysis, 36, pp. 1013–1026, 2002. 
4. D. G. HAYES and P.V. MARCAL, Determination of upper bounds for problems in plane stress using finite element techniques, 

Internat. J. Mech. Scie., 9, pp. 245–251, 1964. 
5. I. R. IONESCU and T. LACHAND-ROBERT, Generalized Cheeger sets related to landslides, Calculus of variations and PDE, 

3, pp. 227–249, 2005. 
6. I. R. IONESCU and E. OUDET, Discontinuous velocity domain splitting method in limit load analysis, Int. J. Solids and 

Structures, 47, pp. 1459–1468, 2010. 
7. I. R. IONESCU, Onset and dynamic shallow flow of a viscoplastic fluid on a plane slope, J. Non-Newtonian Fluid Mechanics, 

165, pp. 19-20, pp. 1328–1341, 2010. 
8. I. R. IONESCU and O. LUPAŞCU, Modeling shallow avalanche onset over complex basal topography, Advances in 

Computational Math., 2015, DOI: 10.1007/s10444-015-9407-2. 
9. Ph. MESATAT, Elasto-plastic modeling of soils, in Elasto-plasticite des sols et des roches, P.-Y. Hichier and J.-F. Shao (eds), 

Hermes Sciences, 2002, pp. 91–157. 
10. P. M. PARDALOS and H. E. ROMEIJN (eds), Handbook of global optimization, Vol. 2, “Nonconvex Optimization and its 

Applications”, 62. Kluwer Academic Publishers, Dordrecht, 2002. 
11. P. SUQUET, Un espace fonctionnel pour les equations de la plasticite, Ann. Fac. Sci. Toulouse, V. Ser., Math., 1, pp. 77–87, 

1979. 
12. R. TEMAM, Problemes mathematiques en plasticite, Gauthiers-Villars, Paris, 1983. 
13. R. TEMAM and G. STRANG, Functions of bounded deformation, Arch. Ration. Mech. Anal., 75, pp. 7–21, 1980. 

Received January 27, 2015 


