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 Abstract. Let  D   be a bounded  1,1C  -domain   in  
n

 )2( ≥n   and  .20 << α   We prove the 
existence and global asymptotic behavior of positive continuous solutions to the following nonlinear 

fractional problem ( ) )(.,2
| ufuD =Δ−

α

  in  ,D   subject to some boundary conditions. In 

particular, we obtain solutions which blow-up at the boundary. Here, the nonlinearity  f   is required 
to satisfy some appropriate conditions related to a Kato class  ).(DKα   Our approach is based on the 
Schauder's fixed point theorem. 

 Key words:  fractional nonlinear problems, Green's function, global asymptotic behavior, boundary 
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1. INTRODUCTION 

Let  D   be a bounded  1,1C – domain in  n    )2( ≥n   and  .20 << α   In this paper we are 
concerned with the existence and global asymptotic behavior of positive continuous solutions to the 
following nonlinear fractional problem: 
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where  λ   is a positive number,  ϕ   is a fixed non-trivial nonnegative continuous function on  D∂   and  f   
satisfies some convenient conditions related to the Kato class  )(DKα   (see Definition 1.1  below). 

Here the fractional power ( )2
|

α

DΔ−   of the negative Dirichlet Laplacian in  ,D   is the infinitesimal 

generator of the subordinate killed Brownian motion process  DZα  . For more description of the process,  DZα   
we refer to [10, 11, 21].  

The nonnegative function  1DMα   is defined by the formula  
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where  0)( >t
D

tP   is the semi-group corresponding to the killed Brownian motion upon exiting  D . 
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We recall that from [10, Theorem 3.1], the function  1DMα   is harmonic with respect to  DZα   and by [21, 
Remark 3.3],   there exists a constant  0>c   such that 

                        ( ) ( ) , allfor  ,)()(1)(1 22 DxxcxMx
c

D ∈≤≤ −− α
α

α δδ  (3)

where  )(xδ   denotes the Euclidian distance from  x   to the boundary of  .D   
In the classical case (i.e.  2=α  ), there exist a lot of works related to problem (1);  see for example, the 

papers of Alves, Carriao and Faria [1], Barile and Salvatore [3], de Figueiredo, Girardi and Matzeu [9], 
Cîrstea, Ghergu and Rădulescu [4], Ghergu and Rădulescu [12–15], Lair and Wood [16], Zhang [22] and 
references therein. In all these papers, the main tools used are Galerkin method, sub-supersolution method, 
symmetric mountain pass theorem and variational techniques. 

In [24], Zhang and Zhao studied the following problem  
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where Ω  is a bounded  1,1C – domain in  n    )3( ≥n   containing  ,0    1>p   and  V   is a measurable 
function such that  

).( class Kato  classical in the is 
||

)(
)1)(2( Ω→ −−

n
pn K

x
xVx  

Definition and properties of the classical class Kn(Ω) can be found in [2, 6]. Then, they showed the 
existence of infinitely many solutions of (4). On the other hand, in [17, 18], the authors proved that the 
existence of infinitely many singular solutions is valid for the following nonlinear problem  
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where Ω  is a bounded 1,1C – domain in n  containing 0  and ),( txg  is a measurable function in 
),0( ∞×Ω  satisfying some appropriate conditions related to a Kato class )(ΩK  which properly contains the 

classical Kato class  )(ΩnK . More precisely, they showed that there exists a number 00 >b  such that for 
each  ],0( 0bb∈  , there exists a positive continuous solution u  in }0{\Ω  of (5) satisfying  
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where  ),( yxG   is the Green's function of the Laplacian in  D. In particular they have extended the result of  
[24].  

The fractional Kato class  )(DKα   is defined by means of the Green function  ),( yxG D
α   of  DZα   as 

follows. 
 Definition 1.1 [7].  A Borel measurable function  ρ   in  D   belongs to the Kato class  )(DKα   if  
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It has been shown in [7], that the function 

          ( ) .for  ),(  tobelongs )( αλδ α
λ <→ − DKxx  (6)

For two nonnegative functions  θ   and  ψ   defined on a set  ,S   the notation  ),()( xx ψθ ≈    ,Sx∈   

means that there exists  0>c   such that  ),()()(1 xcxx
c

ψθψ ≤≤   for all  .Sx∈   

Throughout this paper, for  ),( DC ∂∈ +ϕ   we denote by  ϕα
DM    (see [10]) the unique positive 

continuous solution of  
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Note that there exists  0>c   such that for all  ,Dx∈   
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Observe that problem (1) is in fact a perturbation of problem (7) with the nonlinear term )(.,uf . The 
purpose of this paper is to prove that for λ  sufficiently small parameter and under some adequate 
assumptions on ,f  we obtain a positive continuous solution for (1) which behaves like ϕα

DM  (9). 
The following hypotheses on f  are adopted. 

•  ( )1H f  is a Borel measurable function in ),,0( ∞×D  continuous with respect to the second variable. 
• ( )2H  ),,(|),(| txtqtxf ≤  where q  is a nonnegative Borel measurable function in ),,0( ∞×D  

nondecreasing with respect to the second variable such that .0),(lim
0

=
→

txq
t

  

•  ( )3H  ,0>∀c ( ) ))(,( 2−→ αδ xcxqx  is in ).(DKα   
Our main result is the following. 
THEOREM 1.2. Assume that hypotheses )( 1H – )( 3H  are fulfilled. Then problem (1) has infinitely 

many solutions. More precisely, there exists 00 >λ  such that for each  ],,0( 0λλ∈  there exists a positive 
continuous solution u of (1) satisfying for each Dx∈   
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Observe that, since the function )(xM Dϕα  blows-up at the boundary, we deduce from the global 
asymptotic behavior (9) that also u  blows-up at the boundary. 

We point out that in the case  ,2=α  the existence of positive solutions blowing-up on D∂  has been 
studied by many authors (see for instance [5, 8, 19] and the references therein). 

Using (6), we can verify that hypotheses )( 1H – )( 3H  are satisfied for the special nonlinearity  

,1 ,)(),( >= μμtxptxf  

where p  is a Borel measurable function satisfying: There exists a constant ,0>c  such that for each  
,Dx∈    
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Our paper is organized as follows. In Section 2, we collect some properties of functions belonging to the 
Kato class  ),(DKα  which are useful to establish our main result. In Section 3, we prove Theorem 1.2. 
As usual, let  )(0 DC   be set of continuous functions in  D   vanishing continuously on  .D∂   Note that  

)(0 DC   is a Banach space with respect to the uniform norm: 

.)(sup xuu
Dx∈

∞
=  

2. THE KATO CLASS  Kα(D) 

In this section, we give some properties of functions belonging to the Kato class  ),(DKα   which are 
useful to establish our main result. 
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 PROPOSITION 2.2. [7].  Let  ρ   be a function in  ),(DKα   then we have 
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(ii) Let  h   be a positive excessive function on  D   with respect to  .DZα   Then we have 
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 (iii) The function  ( ) )()( 1 xxx ρδ α−→   is in  ).(1 DL   
The next Lemma is crucial in the proof of Theorem 1.2. 

 LEMMA 2.3. Let  ϕ   be a non-trivial nonnegative continuous function on  D∂   and  ρ   be a 
nonnegative function in  ),(DKα   then the family of functions 
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is uniformly bounded and equicontinuous in  .D   Consequently  ρΛ   is relatively compact in  ).(0 DC   

 Proof.  By taking  ϕα
DMh ≡   in (12), we deduce that for  ρ≤g   and  ,Dx∈   we have 
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So the family  ρΛ   is uniformly bounded. 

Next, we aim at proving that the family  ρΛ   is equicontinuous in  .D   
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Let  ∈0x    D   and  .0>ε   By (13), there exists  0>r   such that  
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On the other hand, for every  DrxBy c ∩∈ )2,( 0   and  ,),(, 0 DrxBxx ∩∈′   by using (10) and (3),  
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Consequently, by Ascoli's theorem, we deduce that  ρΛ   is relatively compact in  ).(0 DC   

3. PROOF OF THEOREM 1.2  

Assume that hypotheses )( 1H – )( 3H  are fulfilled.  We aim at proving the existence of a constant  
00 >λ   such that for each  ],,0( 0λλ∈   there exists a positive continuous function  u   in  D   satisfying the 

following integral equation 
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is continuous in  .D   Moreover, by using again hypotheses  ),( 2H    ),( 3H   and Proposition 2.2, we deduce 
by the dominated convergence theorem that 
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So we conclude by  ),( 1H    ),( 3H   Proposition 2.2 and the dominated convergence theorem that 
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 Example. Let  ,1>μ    ,20 << α    ϕ   be a non-trivial nonnegative continuous function on  D∂   
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Then by Theorem 1.2, there exists  00 >λ   such that for each  ],,0( 0λλ∈   the problem 
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has a positive continuous solution  u   satisfying for each  Dx∈   
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