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Abstract. The aim of the present paper is to study the behavior of charged particles evolving in the 

frozen magnetar’s crust endowed with an extremely strong magnetic induction and a periodic electric 

field. The closed-form analytical solution to the Schrödinger equation is used to derive the conserved 

current density components. It turns out that an additional magnetic induction, of quantum origin, 

comes into play, its amplitude being given by the absolute value of some Mathieu’s functions. In case 

of parametric resonances, this has a rapidly growing unstable behavior along the Ox axis and might 

be responsible for intriguing phenomena in magnetar’s crust. 
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1. INTRODUCTION 

In the last years, a tremendous interest has been manifested in studying the behavior of quantum 

particles evolving in various geometries of fields. In physically important cases with periodic external 

potentials, the fundamental Schrödinger equation casts into the so-called Mathieu’s equation, whose 

solutions are the celebrated Mathieu functions [1]. In contrast with other categories, these special functions 

are presenting a high degree of complexity, due to the fact that one has to deal with a double dependence, 

with respect to the variable and to their parameters [2]. 

The huge number of important results coming from the Mathieu’s equation makes the mission to 

compile a complete bibliography almost impossible and therefore we are calling the attention to a relatively 

small number of research papers. 

Thus, let us mention the investigation of a free-electron laser (FEL) that uses a medium with a 

periodically modulated refractive index and is operating with growing modes in the forbidden regions of the 

Mathieu’s equation parameters [3, 4]. 

In the context of processes concerned with the dynamic stabilization of ions in quadrupole fields, the 

particle’s motion is again governed by the Mathieu’s equation [5].  

As a more exotic topic, Mohseni et al. [6] have focused on the dynamics of massive spinning test 

particle in plane gravitational waves. Non-trivial solutions characterizing the non-geodesic motion of a 

particle that has the spin vector orthogonal to the direction of a polarized harmonic gravitational wave have 

been found in terms of Mathieu functions. It has been suggested that spinning particles may exhibit 

parametric excitation by gravitational fields in the same manner this excitation takes place for dynamical 

systems. 

Recently, an illustrative environment for the behavior of quantum particles has been represented by the 

magnetars [7], the most peculiar and violent celestial bodies. As an exotic type of neutron stars, with huge 

magnetic fields, these astrophysical objects are attractive from the scientific point of view since they allow us 

to detect and study processes in extreme conditions, not available elsewhere. It is no doubt that one deals 

with quite spectacular and unusual phenomena and several theoretical models have been proposed to 

describe the magnetic field structure and the particles behavior in the crust and in the core [8–13]. 

Following a pedagogical approach, the present paper focuses mainly on some aspects related to 

charged particles behavior in the frozen crust, pointing out significant differences from the terrestrial 
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experiments. Thus, we start with the closed-form analytical solution to the Schrödinger equation describing 

the particle moving in a magnetostatic induction 0 0 zB B u  and an electric intensity 0 ( )xE E h x . The function 

( )h x  is not unique, but the trigonometric form ( ) sinh x x  is an acceptable choice, since it satisfies the 

boundary (vacuum) condition ( 0) ( / ) 0x xE x E x L       . 

2. THE SCHRÖDINGER EQUATION  

For a particle of mass 0m , the Schrödinger equation, written in terms of the (1)U -gauge covariant 

derivatives 
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has the well-known form  
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In the followings, let us consider a magnetostatic induction 0B parallel to Oz  and a periodic electric 

intensity 0 sinxE E x , where the parameter  is the wavenumber of the electric field. Such a configuration is 

assumed to exist in magnetar's crust, soon after the crust forms and the astrophysical object can be treated as 

being stationary [11–13]. The components of the four-potential being 

0 4 0, cos , 0x y zA B y A V x A A      , (3) 

satisfying the Lorentz condition 0i

i A  , the general equation (2), with the variables separation 
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leads to the following system of decoupled differential equations 
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In terms of the Hermite associated functions 
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one may write the general solution to Eq. (5 a) as the superposition 
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where nC are suitable weight factors to make a convergent function. For  
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where a is a real parameter, using the relation [14] 
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one finally ends up with 
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In what it concerns the equation (5 b), with the change of variable 2x  , this becomes 

22

0 0 0

2 2 2 2 2

0

8 81
cos(2 ) 0

2 2

z

c

m m qVpd
E n

md


  

  

    
        

    
, where 0

0

.c

qB

m
    

The above equation can be identified with the Mathieu’s equation, in its canonical form [14] 
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whose solutions are the so-called Mathieu’s functions 
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Putting everything together, the wave function (4) is given by 
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with the normalization constant 
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As it is known from the general theory of the Mathieu’s functions [14], the solutions of the differential 

equation (8) are of the form u ~ ( )i zu e f z , where ( )f z is a periodic function, while the Mathieu Characteristic 

Exponent,  , depends on the  ,   values and may be real or imaginary.  

In order to illustrate the exponentially growing modes, which appear for values of the Mathieu 

parameters, in Fig. 1, we are representing the absolute value of the MathieuC function, in terms of / 2w x , 

for   in both the stability and instability ranges. 

For given   and  , one gets an infinite discrete set of values of  , called the eigenvalues or the 

characteristic values. In the particular case   >>   (described by the thick plot in Fig. 1), which is typical 

for nano-samples, the resonance condition coming from the expansion 
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is leading, in view of (9), to the familiar energy quantization law 
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When the electric field comes into play and 
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the wave functions are exponentially growing as a result of parametric resonance (see, in Fig. 1, the thin plot) 

and the instability region, of width 
0qV , gets larger once the electric field intensity is increasing. For a 

detailed discussion based on graphical representations of the absolute value of the Mathieu’s functions for 

the parameters inside and outside the stability zones [11–13]. 

 

 

 
Fig. 1 – The absolute value of MathieuC, as a function of / 2w x , for the stability range (the thick plot)  

and for the entrance in the instability range (the thin plot). 

In the case of a magnetar whose magnetic field is extremely strong, 10 12

0 10B ~ 10 12

0 10B  T, one has 

0/ ( ) /Bl qB L     , where L is the crust extension and therefore we can neglect the first term in the 

right hand side of the relation (12). Moreover, since the distance between the Landau levels is quite large, all 

particles, situated on the 0n   Landau level, have the energy 
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In the opposite situation    >>  which is the case of particles inside magnetar’s crust, one may use 

the following expansion [15] 

               2 4N     , (15) 

that, in view of (9), becomes 
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Since the imaginary part of the Mathieu Characteristic Exponent has a dominant contribution, the 

absolute value 2| | , with   given in (10), is exponentially growing along Ox, as suggested by the thin plot in 

Fig. 1. 
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3. THE CONSERVED CURRENT COMPONENTS 

Once the full expression of the wave function is known, one is able to compute the four-dimensional 

conserved current density components defined by 
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Obviously, if the momentum component along the magnetic induction,
zp , is set to zero, the current 

component 
zj  vanishes and one is left with the current along the direction of the electric intensity 
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with /y Bb L l and ( )  given by (7). 

In ultra-strong magnetic fields for which Ly >> lB, as in magnetar’s crust, one has 

2 2 2 2| | | | exp 2x B B

q q
J l d l a a

h h
       





     .  

For the energy quantization law 
n cE n  , the parameter a can be identified with the time-dependent 

function 
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so that one gets the following periodic current whose amplitude is expressed in terms of the Mathieu 

functions,  
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In the opposite case of nano-samples with 025 /y BL l B   (nm), this current component can also be 

neglected since the first nonzero contribution in the expansion with respect to /y Bb L l  is 
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Let us remind the reader that the magnetic field evolution in the magnetar’s crust of both isolated and 

accreting neutron stars is described by the basic equation [16] 
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which encodes the Ohmic diffusion and the Hall-type contribution.  

Thus, the current of quantum origin ,x

x

x y

J
j

L L
 with xJ given in (18), may generate, through the Hall-

type term in (19), the following (periodic) additional magnetic induction  
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where the total charge is  
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In comparison with the background field 
0B , the induction 

zb given in (20) has rapidly growing 

unstable modes along Ox, for ranges of the parameters where the imaginary part of the Mathieu 

Characteristic Exponent comes into play (Fig. 2b). 

 

 
Fig. 2 – Generic representation of the additional magnetic induction (20), as a function of w, for:  

a) the stability range; b) the instability one. 

4. CONCLUSIONS 

A motivation to analyze particles evolving in strong magnetic fields comes from the new and 

interesting results that have been revealed at the interplay between the physics of condensed matter and the 

physics of compact astrophysical objects. One can expect that, in neutron stars with a wide range of 

densities, from the density of iron nucleus at the surface to several times the normal nuclear matter density in 

the core, the existence of different types of particles, which can be studied with Schrödinger equation, has a 

significant influence on the star properties. 
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For describing the magnetar’s crust, we have considered a background magnetic field parallel to Oz, 

while the electric field along Ox is bounded in x and can be taken as a periodic function of the form 

0 sinxE E x , with 
xL  . The solutions to the Schrödinger equation describing a (non-relativistic) 

quantum particle evolving in the crust, expressed in terms of the Hermite and Mathieu’s functions, have 

allowed us to compute the conserved current density components.  

The current (18), of quantum origin, is the source of a time-periodic additional magnetic induction 

(20), whose amplitude is given by the Mathieu’s functions and their derivatives. Even though 
zb is several 

orders of magnitude smaller than
0B , in the case of parametric resonances, this is exponentially growing 

along Ox (Fig. 2b).  

Within a different approach, Hall drift induced instabilities that are modifying the field decay in 

compact astrophysical bodies have been assumed to be generated by a density of current j b  , where b 

is a small perturbation of the reference state 
0B  [17]. Such instabilities are very important since the Hall 

timescale being several orders of magnitude faster than the Ohmic one, changes in the field structure (on 

Hall timescale) might give rise to a turbulent cascade, enhancing the efficiency of the total Ohmic energy 

decay. 
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