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Abstract. We obtain solitary wave and other solutions to the Zakharov-Kuznetsov equation governed 

by dual-power-law nonlinearity. The travelling-wave hypothesis is applied to obtain the 1-soliton 

solution and the solution in series method reveals topological soliton solutions. Constraint conditions 

are identified in all these methods. 
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1. INTRODUCTION 

The Zakharov-Kuznetsov (ZK) equation is one of the most important equations studied in the context 

of plasma physics and astrophysics [1–18]. This equation was first derived for describing weakly nonlinear 

ion-acoustic waves in strongly magnetized lossless plasmas in two dimensions [17]. While it is common to 

analyze the ZK equation with power-law nonlinearity, this paper is going to consider this equation governed 

by dual-power-law nonlinearity to keep it on a generalized setting. In the past, the Ansatz method was only 

implemented to extract the 1-soliton solution of this equation [2].  

The ZK equation falls under the category of nonlinear evolution equations (NLEEs) in the context of 

mathematics and mathematical physics. In modern times there exists a plethora of integration tools available 

to integrate NLEEs. A couple of these powerful methods are for example the inverse scattering transform 

(IST), Hirota’s bilinear method and other seemingly rare techniques [19–49]. This paper will adopt a few 

modern techniques to search for nonlinear wave solutions to this equation. The travelling-wave approach 

directly reveals a 1-soliton solution and the solution in series will illustrate other solutions, such as 

topological solitons. These are studied sequentially in subsequent sections. 

2. MATHEMATICAL ANALYSIS 

The ZK equation with dual-power-law nonlinearity is given by [2, 10] 

        0)()( 2  xyyxxx

nn

t qqcqbqaqq , (1) 

which is equivalent to 

           0)( 22  xx

nn

t qcqbqaqq . (2) 

In Eq. (1) the dependent variable ),,( tyxq  represents the profile of the wave, while x  and y  are the 

spatial variables and t  is the temporal variable. The first term is the temporal evolution term, the second and 

third terms together constitute the nonlinear terms, where n  represents the power-law nonlinearity 

parameter, hence the expression dual-power-law nonlinearity. The last two terms are the dispersion terms. 
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The solitons are the outcome of a delicate balance between dispersion and nonlinearity. The constants a , b , 

and c  are the coefficients of the nonlinear and dispersion terms. 

3. TRAVELLING-WAVE METHOD 

For this method, the starting hypothesis is 

               )()(),,( 21 sgvtyBxBgtyxq  , (3) 

where  

              vtyBxBs  21
. (4) 

In Eq. (1) the function )(sg  represents the wave profile. The parameters 1B  and 2B  are related to the 

inverse widths of the solitary wave in the x  and y-directions, respectively, that is propagating with a velocity 

v . We substitute Eq. (3) into Eq. (1) and we integrate once and choose the constant of integration to be zero 

since the search is for a soliton solution. This results in  
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where dsdgg   and 
22 dsgdg  . Multiplication on both sides of Eq. (3) by g   and a further single 

integration after we again choose the constant of integration to be zero yields 
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Separation of variables in Eq. (6) and integration leads to the 1-soliton solution of Eq. (1) to be 

               

nvtyBxBBD

A
q

1

21 )]}(cosh[{ 

 , 
(7) 

where the amplitude A  of the soliton is given by 
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while the width B  of the soliton is given by 
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and the parameter D  of the solution is 
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These parameters introduce the constraint conditions 

          0)12()2)(1()12( 2
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and  

0cv . (12) 

Hence finally to conclude, the 1-soliton solution for Eq. (1) is given by Eq. (7). The amplitude A of the 

soliton is given by Eq. (8), while the parameters B  and D  are respectively given by Eqs. (9) and (10). 

These results introduce the parameter domain restrictions given by Eqs. (11) and (12) that must be valid for 

the existence of the soliton solution. 

4. SOLUTION IN SERIES METHOD 

CASE (i):  1n . When 1n , Eq. (5) reduces to 

0
32

32  gggvg 


, (13) 

where  

)(,, 2
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We employ the method of solution in series [19–21] by first finding the solution of the linear part of 

Eq. (13) in terms of real exponential functions. For example, the linear equation 

0  vss ,  

gives the solution 




v
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With the scaling g
v

g ~2


 , Eq. (13) can be written as 
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Following the solution of the linear part, we set 
Ksesh )(  and assume the solution of Eq. (15) in the 

form 
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Substitution of Eq. (16) into Eq. (15) gives rise to the recurrence relation for 3k  as 
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With 
9

2
 , we obtain 
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The general term ka   is given as 
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This provides a closed form for  g~  convergent for 1dh ,  that is 
K

d
s

ln
 . By expanding g~  in a 

series in powers of 
Kse , we obtain a similar closed form for 

K

d
s

ln
 .  

Thus Eq. (22) holds for all  s .  
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Thus the topological soliton solution of Eq. (3) is given as 
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CASE (ii): 2n . In this case, Eq. (5) reduces to 

0
53

53  gggvg 
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where   ,   ,    are given by Eq. (14). 

With the scaling g
v
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
 , Eq. (25) can be written as 
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Again, following the solution of the linear part, we set 
Ksesh )(  and assume the solution of Eq. (26) 

in the same form  
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Substitution of Eq. (27) into Eq. (26) yields the recurrence relation for 5k  as 
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We find 02 a , 
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The first few coefficients are  
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Here 1.3.5)...32)(12(!)!12(  kkk .  This will also hold true for 0k  if we define 1!)!1(  .  

Substitution of Eq. (31) into Eq. (27) results in 
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which can be written as 
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As in case (i), Eq. (33) holds for all  s .  Thus 
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and we have 

)]tanh(1[2)(~2  Kssg .  (35) 

Thus the topological soliton solution of Eq. (3) is given as  
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5. CONCLUSION 

The Zakharov-Kuznetsov equation with dual power nonlinearity has been solved using the travelling 

wave hypothesis to derive 1-soliton solutions. The method of solution in series has been employed to derive 

topological soliton solutions in the special cases of 1n  and 2n . For other values of n we will investigate 

exact solutions of the Zakharov-Kuznetsov equation with dual power nonlinearity by using other methods. 

Foremost among them are the mapping methods. They give a variety of solutions in terms of Jacobi elliptic 

functions (JEFs) by a normal mapping method, a combination of JEFs with their reciprocals using a modified 

mapping method, and a combination of two different JEFs using an extended mapping method. This will be a 

topic for future research for special cases of the parameter n .   
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