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Abstract. We study a system of nonlinear hyperbolic equations, with nonlocal boundary conditions, 
arising in the modeling of cell growth. The basic model introduced in [7] is completed with a 
parabolic equation simulating the effect of a treatment introduced in the cell system. The mechanism 
described is based on experimental evidence for tumoral cells. The aim of the paper is to prove the 
well-posedness of the system under certain conditions on the parameters. 
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1. PRESENTATION OF THE PROBLEM 

The model we consider describes the cell growth in a tissue viewed as an aggregate of different cells 
which are arranged in multiple layers and undergoes a continuous renewal process. Many mathematical 
models have been proposed for cell aggregates, including age structure (see [2, 5, 9, 10]), but few models 
have been devoted to the spatial organization of stratified epithelia (see [1]). A model describing in a more 
rigorous way the epidermis formation as a system with age and space structure was introduced in [6] where 
conditions for the existence of a steady state were investigated. Paper [7] was devoted to prove existence and 
uniqueness of a solution to the evolution problem and of the related moving boundary representing the 
external surface of the epidermis. In [8] a numerical scheme for the computation of the cell densities was 
proposed, its convergence was studied and numerical simulations were provided. 

In this paper, we complete the basic model [7] with a parabolic equation simulating the effect of a treatment 
introduced in the cell system. Thus, we shall analyze the following nonlinear hyperbolic-parabolic system in the 
domain age-space ( ) ( ) ( ), 0, 0, ,ia x a L+∈ × 1 2 3i , , ,= for the time ( )0t ,T∈  with ia , L+  and T  finite 
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where U  has the representation (see [7]) 

( ) ( ) ( ) ( )
3

0 0 0
1

1 d dix a
i i*

i

U t,x; p u t k t,a, p t,a, a .
+

=

= + ξ ξ ξ
Φ ∑∫ ∫  (5)

In this model, 1p  and 2p  are two types of cells, e.g., proliferating cells (initiating the tissue formation) 
and differentiate cells (forming the tissue), U  is the velocity of the tissue growth, depending on ( )0t ,T ,∈  

( )0x ,L∈  and on all system ( )1 2 3p p , p , p .=  The functions 1 2 3 1 1    , , , , M , rμ μ μ β  are the vital rates 
representing the mortality ( )iμ  of the cells ip , fertility of 1p ( )1 1,Mβ  and the average number ( )r  of cells 
obtained by the division of 1p , respectively. At 0x =  the system is supplied with 1p  and 2p  cells by the 
known fluxes 1P  and 2P . Finally, ( )0u t  is given, *Φ  is a constant and ik  include the variations of the cell 
volumes and of the other parameters with respect to a  and x . 

In the model of this paper we introduced another type of cells, denoted 3p , which is a population 
formed from 1p  under the action of a medicine σ . More exactly, cells from the population 1p , under the 
action of σ , can cease to proliferate and become inactive cells 3p . They are removed from the population 

1p  with the rate 13λ  depending on σ . At the same time they enter into the population 3p  with the same rate. 
This transition can be temporary and the process can revert, that is 3p  can go back into 1p  with the rate 31λ  
depending on σ . This mechanism was described e.g., in [3] for tumoral cells. 

Equation (4) represents the dynamics of the treatment, supplied by the source f . The first term on the 
right-hand side in (4) shows the consumption of σ  by all types of cells with the nonnegative rates id . The 
boundary condition on { }0x =  indicates another possibility of introducing the treatment in the tissue by a 
supply 0σ , while the boundary condition on { }x L=  shows that there is no medicine flux through this 
boundary. The conditions on the boundaries can be reverted. 

If 13 31 0λ = λ =  we retrieve the model proposed in [7], for less types of cells, without the influence of σ . 
The aim of this paper is to prove the well-posedness of the system (1)-(4) under certain conditions on 

the parameters. 

2. MAIN RESULTS 

We shall prove the solution existence by a fixed point theorem. 
Hypotheses: 
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hold. Then, system (1–4) under the hypotheses (6–9) has a unique solution 
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and we observe that M  is closed and 0M M .=  
Let z X∈  and fix p z=  in the expression of ( )U t,x; p  and in some terms (which will be see below) 

on the right-hand sides of (1–4). So, we are led to the following problem with the solution denoted ( )iZ t  and 
zσ  which depend on ( )1 2 3z z ,z ,z ,=  
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where  
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where by the hypotheses (8–9) and the choice of 0z M ,∈  we note that [ ] [ ]( )1 10 0F C ,T C ,L∈ ×  and 
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with C  a constant depending on id .  Then, the solution zσ  is introduced in (14–16) and lead on the right-
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According to Proposition 2.2 in [7], Eq. (23) has a unique solution [ ] [ ]( )1
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for appropriate choices of the parameters, as specified in (10). This proves (i). 
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Now, choosing γ  such that ( )1 22 C R ,R ,γ >  we obtain that Ψ  is a contraction on 0M .  

By continuity and (i) it follows that ( )M M ,Ψ ⊂  while (25) implies that Ψ  is a contraction on X , for 

any z,z M ,∈  too. Hence, Ψ  has a fixed point ( )z ZΨ =  which means that (1–4) has a unique solution 
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