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Abstract. An elasto-plastic constitutive model is proposed to describe the behaviour of crystalline 
materials with microstructural defects like dislocations. The defects are defined in terms of the 
incompatible plastic distortion. The model involves the free energy assumed to be dependent on the 
elastic strain and torsion of the Bilby connection. The non-local diffusion-like evolution equation 
describing the plastic distortion is derived. In the case of small distortions, the edge dislocations are 
defined and the evolution equation for the plastic distortion tensor is derived starting from the finite 
distortion case. The initial and boundary value problem concerning the tensile test of a non-
rectangular sheet is solved numerically in the hypothesis that, at the initial moment, a single area of 
dislocations describes the heterogeneity of defects.  
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1. INTRODUCTION 

In this paper, we present a model within the constitutive framework proposed in [10], by considering 
dislocations only as defects, without disclinations. The results provided here appear as particular cases of 
those obtained in the above mentioned paper. 

The measures of defects are defined in terms of the incompatible plastic distortion, .pF  The defect 
densities characterize the Burgers vectors defined within the finite deformation framework, and are reduced 
to curl pH  in the case of small plastic distortion. Comparing to [8] where the scalar densities of dislocations 
in slip systems have been considered, in the present model we adopt tensorial densities of dislocations. Also, 
in [8, 9] non-local diffusion-type equations for scalar densities of dislocations were represented. In the 
numerical example presented in [7], at the initial moment, a non-homogeneous distribution of the scalar 
densities of dislocations was assumed, only the local type of the evolution equations being considered. 

In Section 2 we recall the definition of the Burgers vector, and tensorial definitions for the dislocation 
densities. In Section 3 the principle of the free energy imbalance is formulated like in [5] (following the idea 
of Gurtin [14, 1]. The viscoplastic-like equation for micro forces and a new evolution equation for the plastic 
distortion were derived, with respect to the reference configuration within the large deformation formalism. 
In Section 4 we restrict to the small elasto-plastic distortions formalism and the evolution equation is also 
provided.  

In section 5, the corresponding variational equalities for the incremental equilibrium equation, and the 
evolution equation for the plastic distortion were formulated. In Section 6 we consider a tensile problem in a 
non-rectangular sheet when dislocations describe the initial heterogeneity of the defects. The initial and 
boundary value problem is formulated. 

Notations. For a second-order tensor Lin∈A  and a third-order tensor 

( ) { }Lin,   linLin ,Lin ear→∈ ≡ N :V VΓ , we denote: ( ) ij
kijk

A
X
∂

∇ =
∂

A  the gradient components of the field 
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A ; SkwΓ  is defined by ((Skw ) ) =u vΓ ( ) ( ) ,−u v v uΓ Γ  ,∀ ∈u v V ; curlA  is defined by 

(curl ) pk
pi ijk j

A
X
∂

=
∂

A ε , where ijkε  denote Ricci permutation tensor components; The gradient with respect to 

the configuration with torsion K is given by 1( ) ( )( ) ,−∇ = ∇ ∀ ∈ pA u A A u u F VK ; The second order velocity 

gradient is defined by  ( ) ( )i
k jijk

v
x xχ

∂∂
∇ ≡

∂ ∂
L , with χ= ∇L v ; [ ]1 2,F FΓ  is defined by 

[ ]( ) ( )( )1 2 1 2,F F u v = F u F vΓ Γ , ,∀ ∈u v V , where 1F , 2F  are second order tensors; { } { },  S aA A  are the 
symmetric and skew-symmetric parts of A . 

2. MEASURES OF DISLOCATIONS 

The behaviour of elasto-plastic crystalline materials with defects is described in terms of three 
configurations: the reference configuration k of the body ,  ( )k ⊂B B E , (·, )tχ  the deformed configuration at 
time ,t  for any  motion of the body B , :χ × →B E  and the so-called current local relaxed configuration, 
or plastically deformed configurations K . 

The deformation gradient ( , )tχ= ∇F X  is multiplicatively decomposed into the elastic and plastic 
distortions, denoted by ,  ,e pF F  namely ,e p=F F F  at every point of the body, using the physical arguments 
mentioned in [11]. The elastic and plastic distortions eF  and pF  are invertible tensors which cannot be 
expressed through the gradient of certain vector fields. 

Let 0Α  be a surface with the normal N  bounded by 0C a closed curve in the reference configuration. 
Following [4] the Burgers vector associated with the circuit 0C  is defined by  

 
0 0

T1d d (curl ) d (curl )( ) d .
det

p p p p
pA A= = = =∫ ∫ ∫ ∫b x F X F N F F n

F
K K

K K K K
C C A A

 (1) 

The Noll's dislocation density tensor αK with respect to the configuration with torsion is expressed by   

T1: (curl )( ) ,
det

p p
p=α F F

FK  and was  introduced by [17].  By a pull-back procedure we define the 

dislocation density tensor α with respect to the reference configuration 1: ( ) curl .p p−=α F F  
We refer to the plastic distortion as an incompatible field.  The plastic distortion has a non-vanishing 

curl, i.e. curl( ) 0p ≠F  in a material neighbourhood of the considered material point, which ensures the 
existence of a non-vanishing Burgers vector defined by the relation (1). 

 We define the plastic Bilby connection [3]  in terms of the gradient of plastic distortion with respect to 

the reference configuration, ,k  by 
( )

1( ) .
p

p p−= ∇F FA  Consequently, the tensorial measure of dislocation α  

also means that  
( ) ( ) ( )

( ) ( ) ( ) (Skw ) , , .( )p p p

× = − = ∀ ∈α u v u v v u u v u vA A A V   

3. FREE ENERGY IMBALANCE AND MICRO BALANCE EQUATIONS. 
ELASTO-PLASTIC MODELS WITH DISLOCATIONS 

IN THE REFERENCE CONFIGURATION 

3.1. Free energy imbalance 

We assume the existence of the free energy density function and the definition of the internal power 
( ) ,int KP which includes the work done by forces conjugated with the appropriate rate of second order elastic 
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and plastic deformations. The effect of dislocations is involved in the model via the gradient of the plastic 
distortion.  

AXIOM 1. The elasto-plastic behaviour of the material is restricted to satisfy the free energy 
imbalance formulated in K  and written for any virtual (isothermal) process, i.e. ( ) ψ 0.int − ≥K KP  
In the following 0ρ , ρ, ρ  are the mass densities in the initial, relaxed and actual configurations respectively, 
and they are related by ρ ρpJ = , 0ρ ρJ = , where detp pJ = F , detJ = F .  

AXIOM 2. The internal power in  K  configuration is postulated to be given by    

 11 1 1 1( ) { } · · · · ( ) ( )[ , ] .
ρ ρ ρ

 
ρ

 ( )S e p p p p e e e p
int χ

−= + + ∇ + ∇ −∇T L L μ L μ F L F F LK K K KP Y  (2) 

Here the symmetric part { }ST  of the Cauchy stress tensor T  is conjugate with the rate of elastic distortion, 
1,−=L FF  1( )e e e −=L F F , 1( )p p p −=L F F .  The macro stress momentum μK , written in the last term of (2), is 

work conjugate with a measure of the gradient of the rate of elastic distortion. The micro forces ,( )p pμΥ are 
associated with the plastic behaviour. 

Macro balance equations for the non-symmetric Cauchy stress, T , and macro momentum μ  satisfy in 
the actual configuration  the following  balance equation  

 1div { } {div } ρ 0.
2

( )S a− + =T μ b  (3) 

We recall that the macro stress momenta, μ  and ,μK   in the actual and anholonomic configuration are 

related by T T T( ) [( ) ,( ) ].
ρ ρ

e e p−=
μμ F F FK  

For micro balance equations related to the  plastic behaviour,  we  refer  to [4,6]. 

PROPOSITION 1. The micro balance equation for micro forces associated with the plastic mechanism 
is written in the reference configuration as  

 T T
0div( ( )( ) ) ρ , μ (   . ) p p p p p p p p p p p J in J on− −= − + = ∂μ μ F B F N MK B BΥ  (4) 

In the following we postulate that the free energy density with respect to the reference configuration 

depends on the elastic strain and defects in the form 2
1 1ψ ( )·( ) β · ,
4 2

p p p p= − − +C C C C S SE  where E  is the 

elastic stiffness matrix, T=C F F , T( )p p p=C F F  and pS  is the skew-symmetric part of the connection 
( )

( ) (Skw ) .( )p
p ≡S u v u vA  Here 2β ,  is a real parameter.  

The consequences induced by the principle of the free energy imbalance are the following: 

PROPOSITION 2. 1. The constitutive equations are reduced to the elastic constitutive one:  

 T
0

0

1 1{ } 2 ( ) ,  ,
ρ

 
ρ

S p− ==T F C C F μ 0E  (5) 

and the energetic relationships  which express the plastic micro momentum as  

 0 2
0

1 β .
ρ

 p p=μ S  (6) 

2. The evolution equations for the plastic distortion are given by:   
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 1
0 1

0

1 2 ( ) ξ ,  where )
ρ

 (p p p p p p p−+ − = =lΣ C C C l F FE . (7) 

Here Mandel stress tensor, is introduced with respect to the reference configuration by 
T T

0
0

1 1 ( ) ( ) ,
ρ ρ

p p p p −=Σ F FΥ  while the micro stress momenta with respect to the reference configuration are 

expressed by T 1 1
0

0

1 1( ) [( ) ,( ) ].
ρ ρ

p p p p p− −=μ F μ F F  

4. MODEL WITH SMALL ELASTIC AND PLASTIC DISTORTIONS 

Next, we consider the model of small distortions. In the case of small elastic and plastic distortions, the  
linearized expressions derived from the finite deformation fields are given by  

 
( )

, , { } , , ,
{ } , 2( ), 2 ,

p
S p p p

p p S p p p p

+ = ∇ = = + ∇

= − = − = +

F I H H u ε H F I H H
ε H C C ε ε C I ε

A  (8) 

where u  is the displacement vector. The torsion tensor pS  is expressed by Skw .p p= ∇S H  
 The energetic constitutive equations are given by 

 2
1 1( ),   β Skw .
ρ ρ

p p p= − = ∇T ε ε μ HE  (9) 

 The micro forces are characterized by 0 2
0

1 1div( ) β curl(curl )
ρ ρ

p p p= = −Σ μ H  as a consequence of its 

own balance equation (4). 
 Under the hypothesis of small distortions, the elasto-plastic problem  is characterized,  in terms of the 
displacement vector u and plastic deformation tensor ,pH  by  

 T1div( ( )) 0, ( ) , { } .
2

  ( )p p p S− = = ∇ + ∇ =ε ε ε u u ε HE  (10) 

 The incremental equilibrium equation is obtain by deriving the above relation with respect to time and 
takes the form 

 T1div ( ( ) ) { } 0.
2

p S⎛ ⎞⎛ ⎞∇ + ∇ − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

v v HE  (11) 

 The evolution equation for the plastic distortion pH  is obtained from (7) and is given by  

 1 2β curl(curl ) .p pξ = − +H H T  (12) 

 In order to obtain a boundary value problem we attach the boundary condition for the incremental 
equilibrium equation and for the evolution equation for the plastic distortion. Let Ω  be the domain occupied 
by the body B  at the moment t  and Γ = ∂Ω  be the boundary of .Ω  We assume the following boundary 
conditions for the incremental equilibrium equation:  

 *
1 2on , on ,= Γ = ΓTn t v v  (13) 

where 1 2 1 2  and  ,Γ ∪Γ = Γ Γ ∩Γ =∅  and for the evolution equation for the plastic distortion: 

 ( ) (curl )( ) on ,p p= = Γα n H n hε ε  (14) 
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where n  is the outward normal to the boundary of the domain Ω  and ε  represent Ricci permutation tensor. 

5. THE WEAK FORMULATION IN THE CASE OF SMALL DISTORTIONS 

The corresponding variational equality for the incremental equilibrium equation is given by: 

 { }
1

T 01 ( ( ) ) { } · d · d 0, .
2

Sp S
adA

Ω Γ

⎡ ⎤⎛ ⎞∇ + ∇ − ∇ − = ∀ ∈⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫v v H w x t w w VE  (15) 

The unknown { }3 *
2: onad∈ = Ω→ = Γv v R v vV ∣  and { }0 3

2: on .ad = Ω→ = Γw R w 0V ∣  

The weak form of the evolution equation for the plastic distortion can be characterized for any field G  

 1 2 2· d β ( curl )·(curl )d β · d · d .p p p Aξ
Ω Ω ∂Ω Ω

= − + +∫ ∫ ∫ ∫H G x H G x h G T G x  (16) 

5.1. The discretization of the weak form for the evolution equations 

Let us consider 1( )n n Nt ≤ ≤  a partition of the time interval [ ]0,T  and 1d n nt t t+= −  be the increment of 
time. Let nΩ  be the domain occupied by the body on the [ ]1,n nt t +  interval. For the discretization we apply an 
implicit procedure. The time derivative of the plastic distortion is approximate by the formulae  

1

d

p p
p n n

t
+ −

≈
H HH  and the plastic distortion we approximate by 1

p p
n+≈H H .  With these considerations (in the 

0p =h  hypotheses) the discretization of the weak form for the plastic distortion becomes: 

 1
1 2 1· d β ( curl )·(curl )d d .

d
 ·

n n n

p p
pn n
n nt

ξ +
+Ω Ω Ω

−
= − +∫ ∫ ∫

H H G x H G x T G x  (17) 

5.2. The discretization of the weak form for the incremental equilbrium equation type 

In the same way we obtain the discretization for the variational equality (15): 

 { } 1

T 111 ( ( ) ) · d · d 0
2n n

Sp p
Sn n n n

n n dt
A

dt
+ +

ΓΩ

⎡ ⎤⎛ ⎞⎧ ⎫−⎢ ⎥⎜ ⎟∇ + ∇ − ∇ − =⎨ ⎬
−

⎜ ⎟⎢ ⎥⎩ ⎭⎝ ⎠⎣ ⎦
∫ ∫

H Hv v w wt txE . (18) 

6. EDGE DISLOCATIONS  

An edge dislocation is characterized by the components of the plastic distortion which generates a 
Burgers vector in the plane 1 2( , ),e e  i.e. 3 1 1 2 2.b b⇒⊥ +b e b = e e  The plastic distortion is given by: 

( )
11 1 1

p pH= ⊗H e e ( ) ( )
12 1 2 21 2 1 22 2 2

p p pH H H+ ⊗ + ⊗ + ⊗e e e e e e , where ( )1( ( ) 2) ,,p p
ij ij xH xH= , {1,2}i j∈ . The 

dislocation tensor takes the following form: 
( ) ( ) ( ) ( )
12 11 22 21

1 3 21 2 1 2 3curl ( ) ( )
p p p p

p H H H H
x x x x

∂ ∂ ∂ ∂
= − ⊗ + − ⊗

∂ ∂ ∂ ∂
H e e e eα = .  

In our example it is assumed that the initial existing defects inside the microstructure are reduced to an 
area of dislocations, which is characterized by the dislocation tensor 0 ( )xα . 

To find the initial condition for ( ),pH x  i.e. 0 ( )pH x , we follow the procedure proposed by [1] and [18]: 

 ( )0 3 0 0 0curl , div 0, ,    , .p p p= = ∀ ∈Ω = ∀ ∈∂ΩH e b H x H 0 x  (19) 

This means that the following problems has to be satisfied by ( ) ,p
ijH , {1,2}i j∈ , respectively 
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0 0
11,11 11,22 1,2 11 12,11 12,22 1,1 12

0 0
21,11 21,22 2,2 21 22,11 22,2 222 2,1

  ,    0,  ;     ,   0,   ;

 ,    0,  ;    ,    0,  .

p p p p p p

p p p p p p

H b H H b H

H

H H

b H HH H H b

+ = − ∀ ∈Ω = ∀ ∈∂Ω + = ∀ ∈Ω = ∀ ∈∂Ω

+ = − ∀ ∈Ω = ∀ ∈∂Ω + = ∀ ∈Ω = ∀ ∈∂Ω

x x x x

x x x x
  (20) 

We consider a distribution of Burger vectors parallel to the 1Ox  axis, i.e. 0
0 1 1b=b e . In the numerical 

simulation the function 0
1b is defined by  

2 2
1 0 2 0

0 1 22 21
( ) ( )( ) exp[ ( )], ( , ) .

sup sup

max
x y

x x x yt k x x
a

b b
a

− −
= − + ∈Ω   

The algorithm for solving the system of the equations (20), (15) and (16): 
• The elastic problem is resolved until the averaged value of the equivalent stress state becomes equal or 

larger than a critical value, i.e. ( )d / 2 / 3 yA σ
Ω

′ ′⋅ <Ω∫ xT T . Assume that at time 0t  the stress 

reached the yield condition. We mention that ( )A Ω  represent the area of the domain Ω . 
• At this moment we solve problems (20) by employing the finite element method (FEM). The fields 

( )( )
0 ,p

ijH t  represent the initial conditions for the evolution equation (12). 

•   For 0nt t≥   
 We suppose that at the moment nt  one knows the current state of the body, namely: ,p

n nH v .  By 
an implicit procedure we find the solutions for pH at the moment of time 1,nt +  namely 1

p
n+H ; 

 We return at the discretisation of the weak form for equilibrium equation for the rate of 
displacement v and we find the solution at the moment of time  1,nt +   namely 1.n+v  

 One can update the mesh  and all the measures calculated on the previous mesh, knowing the 
velocity field 1n+v . The procedure continues. 

In the numerical simulations, a bidimensional domain represented in Fig. 1, occupied by an aluminum 
crystal has been considered. In the tensile test, the edge 1 0x =  (left side) is fixed. The numerical algorithms 
were performed using the FreeFem++ package [16]. The edge 1 0x L=  (right side) is moved with a constant 
speed 2

1 5.0 10 nm /μsv −= ×  applied along the axis  1Ox  and is fixed along the axis 2.Ox  The time integration 
step (time increment) 2d 10 μst −=  generates an incremental elongation 5

11d 1.5 10ε −= ⋅ . The initial 
dimensions of the sheet are: total length 0 32 nm,L =  the maximum width 0 6.5 nmextl =  and the minimum 
width 0 l 5 nm.int =   
 The values of the material parameters for aluminum [12]: 3μ 27·10 MPa, 0.3, σ 70MPa,  yν= = =    

1111 2222 1122 2211 1221 1212 2112 2121
2μ(1- ) 2μ= = ,  = = , = = = = μ.

1-2 1-2
ν ν
ν ν

E E E E E E E E  The parameters appearing in the 

evolution equations are numerically evaluated in [10]: 5
1ξ 5.7·10 μsMpa= , 3 2

2β 5.7·10 nm MPa= . The 
geometrical parameters which characterize the initial values of the dislocations area are: 0.5 nmxa = , 

1nmya = ,  0 0 0 0/ 2nm, / 2nmx L y l= = , 4.6k = .  

In Fig.1 the initial inhomogeneity, represented by the dislocation tensor component ( )1 13
curl pb = H  is 

plotted at the moment when the plastic deformation is initialized (Fig. 1a) and at the total tensile strain of 1% 
(Fig. 1b). In the center of the sheet we observe the diffusion effect, as the defects are spreading, with an 
increase of the tensile strain. In Fig. 2 are represented the solution of the problems (20), i.e. the distribution 
of the plastic distortion tensor: ( )11 0

pH t  and ( )12 0
pH t , in the initial plastic state that corresponds to 11=0.1%ε . 

The values of the equivalent deviatoric stress in the defect region are comparable with the values which 
appeared in the geometric concentration area (Fig. 3b). The elastic strain fields show dilatation and 
contraction in the defect zone (Fig. 4b) and shear along the vertical axis of the defect area (Fig. 4a).  

In Fig. 3a, the equivalent plastic deformation is shown, and we remark the hardening of the material in 
the zone corresponding to the maximum value of ecT ′ ′= ⋅T T  and the softening of the material in the zone 
corresponding to the minimum value of the equivalent deviatoric stress.   
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These numerical results are similar with the case in which is considered a dipole of disclinations only. 
In the paper [10] we emphasized that the Burgers vectors of the edge dislocations ( )13 23α , α , which are inside 
the disclination dipole, is approximately normal to the dipole arm. This result is in agreement with the 
experiment [2]. The numerical test simulated in the present paper shows that a zone with normal Burgers 
vectors to the 2Ox  axis produce such effect similar to that of a dipole of disclinations with the axis in the 

2Ox  direction.     
                            

                                
                                  (a)                                                                                                       (b) 

Fig. 1 – Distribution of the dislocation tensor component ( )1 13
curl pb = H  in 1nm−⎡ ⎤⎣ ⎦ : 

a) in the initial plastic state that corresponds to  11=0.1%ε ; b) at the total tensile strain of 1%. 
 

 
                                                  (a)                                                                                                      (b) 

Fig. 2 – Distribution of the plastic distortion tensor: a) ( )11 0
pH t ; b) ( )12 0

pH t  in the initial plastic state. 
 

 

 
                                 (a)                                                                                                       (b) 

Fig. 3 – Distribution of: a) the equivalent plastic deformation p p p
ecH = ⋅H H ; b) of the equivalent deviatoric stress 

ecT ′ ′= ⋅T T  in MPa , at the  total tensile strain of 1%. 
 
 

 
                                                   (a)                                                                                                    (b) 

Fig. 4 – Distribution of: a) the elastic component 12
eε ; b) of the tr eε , at the total tensile strain of 1%. 

 

1x

2x
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CONCLUSIONS 

The model describes the behaviour of crystalline materials with defects defined in terms of the 
incompatible plastic distortion. The model was proposed within the second order elasto-plasticity developed 
by Cleja-Tigoiu [4, 5, 8].The non-local diffusion like evolution equation for plastic distortion was derived to 
be compatible with the reduced dissipation inequality for finite and small deformation. 

In order to validate the elasto-plastic model with edge dislocations, the initial and boundary value 
problem concerning the tensile test of a non-rectangular sheet was solved  numerically in the hypothesis that, 
at the initial moment, a single area of dislocations describes the heterogeneity of defects.  

The numerical results clearly showed the effects induced by the initial heterogeneity. 

ACKNOWLEDGMENTS 

Raisa Pascan was supported by the strategic grant POSDRU/159/1.5/S/137750, “Project Doctoral and 
Postdoctoral programs support for increased competitiveness in Exact Sciences research” cofinanced by the 
European Social Found within the Sectorial Operational Program Human Resources Development 2007–2013. 

REFERENCES 

1. Acharya, A., New inroads in an old subject: Plasticity, from around the atomic to the macroscopic scale, J. Mech. Phys. Solids, 
58, pp. 766–778, 2010. 

2. Beausir, B., Fressengeas, C., Disclination densities from EBSD orientation mapping, Int. J. Solids Struct., 50, pp. 137–146, 2013. 
3. Bilby, B. A., Continuous distribution of dislocations, Sneddon I.N., Hill R. (eds.), Progress in Solid Mechanics, North-Holland, 

Amsterdam, 1960, pp. 329–398. 
4. Cleja-Tigoiu, S., Material forces in finite elasto-plasticity with continuously  distributed  dislocations, Int. J. Fracture, 147, pp. 67–

81, 2007. 
5. Cleja-Tigoiu, S., Elasto-plastic materials with lattice defects modeled by second order deformations with non-zero curvature, Int. 

J. Fracture, 166, pp. 61–75, 2010. 
6. Cleja-Tigoiu, S., Non-local elasto-viscoplastic models with dislocations   in finite elasto-plasticity. Part I: Constitutive framework, 

Math. Mech. Solids, 18, pp. 349–372, 2013.    
7. Cleja-Ţigoiu S., Paşcan R., Influence of Dislocations on the Deformability of Metallic Sheets, Key Engineering Materials, Trans 

Tech Publications, 554-557, pp. 99–109, 2013. 
8. Cleja-Tigoiu, S., Pascan, R., Slip systems and flow patterns in viscoplastic metallic sheets with dislocations, Int. J. Plasticity, 61, 

pp. 64–93, 2014. 
9. Cleja-Ţigoiu S., Paşcan R., Non-local elasto-viscoplastic models with dislocations in finite elasto-plasticity. Part II: Influence of 

dislocation density, Math. Mech. Solids, 18, 4, pp. 373–396, 2013. 
10. Cleja-Tigoiu, S., Pascan, R., Tigoiu V., Elastoplastic models with continuously distributed defects:  dislocations and 

disclinations, for finite and small strains, Int. J. Plasticity, submitted. 
11. Cleja-Tigoiu, S., Soós, E., Elastoplastic models with relaxed configurations and internal state variables, Appl. Mech. Rev., 43, 

pp. 131–151, 1990. 
12. Fressengeas, C., Taupin, V., Capolungo, L., An elasto-plastic theory of dislocation and disclination fields, Int. J. Solids Sruct. 48, 

pp. 3499–3509, 2011. 
13. Gudmundson, P., A unified treatment of strain gradient  plasticity, J. Mech. Phys. Solids, 52, pp. 1379–1406, 2004. 
14. Gurtin, M.E., On a framework for small-deformation viscoplasticity: free energy, microforces, strain gradien, Int. J. Plasticity, 

pp. 47–90, 2003. 
15. Gurtin, M.E., Fried E., Anand, L., The Mechanics and Thermodynamics of Continua, Cambridge Uniniversity Press, 2010. 
16. Hecht, F., Auliac, S., Pironneau, O., Morice, J., Le Hyaric, A., Ohtsuka, K., FreeFem++, http://www.freefem. 

org/ff++/ftp/freefem++doc.pdf, (Accessed 20 may, 2014). 
17. Noll, W., Materially uniform simple bodies with inhomogeneities, Arch. Rat. Mech. Anal., 27, pp. 1–32, 1967. 
18. Taupin, V., Capolungo, L, Fressengeas, C.,  Das, C., Upadhyay, M., Grain boundary modeling using an elasto-plastic theory of 

dislocation and disclination fields, J. Mech. Phys. Solids, 61, pp. 370–384, 2013.  

Received August 11, 2015. 

 


