
      THE PUBLISHING HOUSE  PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, 
      OF THE ROMANIAN ACADEMY  Volume 17, Number 4/2016, pp. 366–373 

SWIRL2D: AN INTERFACE TRACKING ALGORITHM 
FOR COMPUTING THE TWO-DIMENSIONAL SWIRLING 

FLOWS WITH STAGNANT REGION 

Alin-Adrian ANTON1, Sebastian MUNTEAN2, Romeo F. SUSAN-RESIGA3 
1 “Politehnica” University of Timişoara, Department of Computer and Information Technology, RO-300223, România  

2 Center for Advanced Research in Engineering Sciences, Romanian Academy –Timişoara Branch, RO-300223, România 
3 “Politehnica” University of Timişoara, Department of Hydraulic Machinery, RO-300222, România 

Corresponding author: Alin-Adrian ANTON, E-mail: alin.anton@cs.upt.ro 

Abstract. The fluid engineering problems require tailored numerical computation algorithms and 
deep mathematical insight. The computation of swirling flows has been an intense field of 
investigation during the last three decades. Swirling flows may develop stagnant regions separated 
from the main flow by an interface that is not a-priori known. The interface localization approaches 
can be: interface capturing techniques (ICaT) and interface-tracking techniques (ITrT). The main 
contribution brought by the present paper is related to an augmented functional for computing the 
fluid interface boundary using a mesh that “tracks” the stagnant region of swirling flows with the help 
of an in-house ITrT software. The variational formulation and the developed software system are 
detailed. The numerical solutions obtained with conventional commercial codes are compared against 
the SWIRL2D in-house solutions. The SWIRL2D algorithm allows for more rapid, robust and 
accurate assessment of the swirling flow when compared with commercial codes. 
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1. INTRODUCTION 

The computation of swirling flows has been an intense field of investigation during the last three 
decades. Such flows are involved in many aspects of basic fluid mechanics as well as in engineering 
problems (e.g. hydraulic turbines). In particular, the draft tube hydrodynamics is mixed due to the 
combination of swirling flow deceleration with flow direction and cross-section shape/area changes [1]. 
Most of the pressure recovery occurs in the draft tube cone, also called discharge cone. The main purpose of 
a hydraulic turbine draft tube is to decelerate the flow exiting the runner, thereby converting the excess of 
kinetic energy into static pressure [2]. Extensive experimental [3] and numerical [4] investigations have 
offered a comprehensive understanding of this flow phenomenon, with accurate evaluation of the main 
parameters, as well as various details of the hydrodynamic field. Nishi et al. [5] introduced a qualitative 
model for the precessing vortex rope, based on their experimental investigations. They suggest that the 
circumferentially averaged velocity profiles in the cone could be represented satisfactorily by a model 
comprising a dead (quasi-stagnant) water region surrounded by the swirling main flow. 

All these considerations led to the conclusion that the spiral vortex core observed in the draft tube of a 
turbine at part load is a rolled-up vortex sheet which originates between the central stalled region and the 
swirling main flow. Resiga et al. [6] have implemented a stagnant region model on top of an incompressible, 
axi-symmetric flow solver, within the framework of the interface capturing techniques (ICaT), and their 
numerical results for the flow with precessing vortex rope in a turbine discharge cone were in very good 
agreement with the LDV measured axial and circumferential velocity profiles. Moreover, it was shown that 
the vortex rope is located on the boundary interface between the central stagnant region and the swirling flow 
computed with interface capturing technique, Figure 1, thus successfully confirming Nishi’s [5] model. 

In swirling flow problems the boundary between the main flow and the stagnant region is a fluid 
interface. Finding the correct interface location is a challenge for the numerical algorithms. Interface 
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localization techniques could be classified in two large classes: interface capturing (ICaT) and interface-
tracking (ITrT). 

 
Fig. 1 – Two-dimensional axi-symmetric flow numerical simulation with stagnant region computed with ICaT [6]. 

 
 Interface capturing techniques (ICaT) compute the flow on a fixed grid, within the whole 
computational domain with fixed boundaries. The interface is then “captured” and identified by maximum 
flow gradients (as in compressible flow shocks) or by simply examining the velocity magnitude and cut-out 
the region with vanishing velocity as in Fig. 1. Other representatives of this class of approaches are the level 
set and the Volume of Fluid method (since it is essentially based on the transport of the local volume fraction 
of the liquid) [7–9]. However, this flexible interface description provides challenges regarding mass 
conservation and the treatment of discontinuities across the interface. 

On the other side, interface-tracking technique (ITrT) requires meshes that “track” the interface [10]. In 
ITrT the interface is a free boundary of the computational domain. Hence, the correction of the interface 
position requires a new grid generation at each iteration [11, 12]. Interface tracking approaches are known to 
provide great accuracy, yet their applicability is limited in the case of severe interface motion. The front 
tracking methods and the marker and cell (MAC) methods belong to the class of interface tracking methods, 
where markers are used to represent and track the interface. 

This paper presents our ongoing efforts for developing mathematical models, and associated numerical 
algorithms, for a robust description of the swirling flow phenomena. The main contribution to be presented 
in this paper is related to an augmented functional for computing the interface boundary. We set our goal to 
develop a theoretical framework for computing the swirling flow starting with the Bragg-Hawthorne 
equation [13] as the basic model for turbine blade-less regions. However, instead of solving the differential 
equation we are using the equivalent variational formulation as introduced by Benjamin [14] with a finite 
element discretization for numerical solution. This novel variational approach is built by admitting a 
continuous static pressure across the fluid interface between the main swirling flow and the inner stagnant 
region, Section 2. The software infrastructure selected for implementation of the SWIRL2D code is 
described in Section 3. The problem setup and the numerical solutions computed with interface tracking 
technique (ITrT) using SWIRL2D code are compared against numerical solutions obtained with interface  
capturing technique (ICaT) using FLUENT [15] in Section 4 while the conclusions are drawn in last section. 

2. A NOVEL TWO-DIMENSIONAL VARIATIONAL APPROACH 

 The two dimensional axi-symmetrical swirling flow model employs the following assumptions: (i) the 
fluid is incompressible and inviscid; (ii) the flow is steady. The axial-symmetry hypothesis allows the use of 
the Stokes’ streamfunction ( )rx,ψ  to express the velocity field in cylindrical coordinates ( )θrx ,,  using unit 
vectors ( )θrx ,,  as given in eq. (1) 

( )ψψgrad k
rr

vvv rx
θθθrxv +×−=++= θ . (1)

In the case of steady, axisymmetric swirling flows of inviscid and incompressible fluids the Euler equations 
collapse into a single partial differential equation (2) [16], known as the Bragg-Hawthorne equation [13],  
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where ( )rx,ψ  is the dimensionless streamfunction, ( ) θvrk ≡ψ  the dimensionless circulation function and  

( ) 2ψ 2vph +≡  the dimensionless total enthalpy. 
 The variational formulation for the Bragg-Hawthorne equation requires the minimization of the 
following functional within the meridian half-plane of the flow domain fD : 

f

2 2

2
1 gradψ (ψ)(ψ) (ψ) d
2 2D

h r D
r r

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

κ≡ − +∫F  . (3)

When stagnant region is present, the functional (3) must be extended to account for the possible 
contributions of the stagnant pressure [17]. The swirling flow is confined to the annular section in order to 
satisfy the differential equation (2). It must minimize the functional (3) with respect to the streamfunction ψ  
subject to the boundary conditions 0ψ =b   and 2ψ qw = . As a result, the extended flow force functional  

)( sr
∗F  in eq. (4) will embed the contribution of the static pressure )(s xp  on the stagnant region, 

Drxpr
D
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s

s
ψ

s ∫+≡∗ FF . 
(4)

It is considered that the boundary between a stagnant region and the swirling flow is generally represented by 
a vortex sheet with possible jumps in both velocity components. However, since this is a fluid interface, the 
pressure across the vortex sheet must remain continuous while the evolution of the static pressure on the 
stagnant region boundary )(s xp  is accounted in the meridian half-plane of the stagnant region domain sD  as 
follows in eq. (5): 
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where the static pressure on the stagnant region boundary )(s xp  is computed on the stagnant region 
boundary (interface) )(s xr  using eq. (6).  
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As a result, the functional (4) reaches a maximum for the correct stagnant region extent. Conclusively, the 
numerical approach for computing the swirling flow can be summarized as follows: find the value of the 

)(s xr  which maximizes the functional )( sr
∗F  while )ψ(F  is minimized. This is the main theoretical 

development which allows the correct computation of the swirling flow with stagnant region. 

3. NUMERICAL IMPLEMENTATION 

The two-dimensional variational approach presented in the previous section is implemented in our in-
house code called SWIRL2D shown in Fig. 2 together with the software packages containing both legacy 
FORTRAN77 [18] and C99 [19] modules connected with the PETSc Toolkit [20]. The PETSc Toolkit [20] is 
Libre software [21] which provides a suite of data structures and routines for the scalable solution of 
scientific applications modeled by partial differential equations [22]. 

The boundaries of the two-dimensional computational domain are built in the preprocessing() routine. 
The line segments are used to define the inlet, the outlet and the wall boundaries, respectively. The fluid 
boundary is defined using a spline function with several knots. The parameters of the problem correspond to 
the radial coordinates of the knots while the axial coordinates are imposed. The spline function is provided 
by the GNU GSL package as a C library [23]. The initial guess of the fluid boundary is determined using the 
solutions of 1D swirling flow problems [24] for each axial coordinate of the knot. The mesh nodes on each 
boundary are obtained by interpolation using the GNU GSL package. The unstructured mesh with triangle 
elements is generated on the two-dimensional computational domain using the TRIANGLE package [25]. As 
a result, the unstructured mesh is generated based on the boundary nodes together with the list of the 
connectivity which specifies the way a given set of nodes is associated to each triangle element. A data 
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structure type of triangulateio implemented in TRIANGLE package is considered for the unstructured mesh 
in Fig. 3. 

 

The Finite Element Method (FEM) is 
considered to discretize the flow equation 
based on auxiliary variable (stream-function) 
then the linear system of equations is built 
and iteratively solved using Krylov method 
(KSPsolve() routine) implemented within the 
PETSc Toolkit package [18]. As a result, a 
streamfunction value is obtained in each 
node of the mesh and the velocity 
components are straight-forwardly computed. 
Next, both Bragg-Hawthorne functional (3) 
over the flow domain and the extended 
functional (4) over the flow domain with 
stagnant region are assessed for location of 
the fluid boundary.  

A sequential quadratic programming 
(SQP) method for the numerical solution of 
constrained nonlinear optimization problems 
(NLP) [26, 27] developed by Prof. Peter 
Spelluci in DONLP2 package [28] and 
implemented in FORTRAN77 library is used 
to find the extreme value of each functional. 
The SQP method uses an iterative procedure 
to find the location of the fluid boundary 
which satisfies the conditions. In the end, the 
SQP method delivers the radial coordinates 
of the knots associated to the optimum 
solution of the fluid boundary. In order to 
link the DONLP2 FORTRAN77 package 
with the main code developed in C, the GNU 
family of compilers is used for both parts of 
the code, the GNU FORTRAN compiler and 

the GNU C compiler [29]. 
Unlike FORTRAN the C language does not provide any mechanism for calling function arguments by 

their name. Subroutine arguments in FORTRAN are passed with address references while C language by 
default passes function arguments by copying the parameter values. Because of the C and FORTRAN 
linkage all parameters are passed with C pointers. Also variable blocks are grouped in global structures for 
compatibility. This is transparently handled by the in-house developed DONLP2IF interface package. 

Fig. 3 – Two-dimensional axisymmetric computational domain and triangle mesh generated with SWIRL2D code. 

 
Fig. 2 – Algorithm for computing the swirling flow 

with stagnant region implemented in SWIRL2D code. 
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The algorithm for determining the fluid boundary with interface tracking technique implemented in the 
SWIRL2D package is shown in Fig. 2. The stagnant region is computed starting with an initial educated 
guess of the coordinates of the points. The rest of the path is obtained by interpolation providing a complete 
geometry for FEM analysis. A mesh is generated within the computational domain and the flow equations 
are solved using FEM. The numerical results are used to evaluate the functional yielding its value. The 
numerical procedure is repeated until the functional value reaches the maximum value. This provides both 
the path of the stagnant region and the numerical solution within the computational domain. 

The final plot of the solution is obtained using external visualization software (e.g. TECPLOT [30]). 
Although software for converting FORTRAN language to C is available, the original FORTRAN77 version 
is preferred because it is the native language for scientific computing and it is the original language used for 
developing the DONLP2 package [28]. A different solution using the F2C [31] converter is tested against the 
provided benchmarks [29] and the same numbers are obtained. However FORTRAN automatically 
converted to C99 looks messy and is much harder to debug therefore the use of native language 
programming packages is preferred. 

The PETSc solver is called up until the DONLP2 package [28] determines that the value of the 
functional is maximal. This is done using the sequential quadratic programming (SQP) algorithm explained 
in [26] and [27] and boundary constraints consisting of a set of equalities and inequalities. The PETSc 
Toolkit provides elegant directives for processing the specialized data structures for the solution of large 
linear systems of equations. The next section presents numerical results obtained using this implementation. 

4. PROBLEM SETUP. NUMERICAL RESULTS 

The two-dimensional, axi-symmetric, steady, inviscid swirling flow in a diffuser is considered in our 
approach. The computational domain corresponds to the diffuser shape with the wall radius given by 

 ( ) ( ) ( ) ( )[ ]2
22

2
122

2
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outletwinletwoutletwinletww xERFRRRRxr −+−++=  with   60 =≤≤ Lx , (7) 

where the wall radius of the inlet section is 1.1=inletwR , the wall radius of the outlet section is 5.1=outletwR and 

ERF(x) is error function (also called the Gauss error function) defined as 
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0

2 e d
π

x tERF x t−= ∫ . (8) 

A computational domain is shown in Figure 3, with the inlet boundary corresponding to an annular 
section delimited by the hub and the shroud radii, respectively. For computational convenience, the actual 
outlet section is selected in order to comply with the parallel flow assumption (negligible radial velocity) on 
it. The Neumann boundary conditions imposed on the inlet and outlet sections are computed using 
SWIRL1D code [24, §4.1]. The Dirichlet boundary conditions are imposed on the wall ( 2ψ q= ) and the 
fluid boundary ( 0ψ = ), respectively.  

The inlet boundary conditions imposed for FLUENT2D problems correspond to a solid body rotation 
swirling flow, with velocity components given by 
 1; 0; ( ) ω ,x inlet r inlet inletv v v r rθ= = =  (9) 

where ω is the angular velocity, the wall radius of the inlet section is 1.1=inletwR while the hub radius of the 
inlet section of 0.2b inletR = is selected. Two cases are selected in order to verify the numerical solutions 

computed with SWIRL2D code. The swirl intensity is increased as 2 and1ω2 =≡ inletxinletw vRζ  [36]. 
Figure 4 shows the streamlines in a meridian half-plane for low swirl intensity .1=ζ  The numerical 

solution computed using interface tracking technique (ITrT) with SWIRL2D code is plotted in the upper 
meridian half-plane while 2D axi-symmetric inviscid flow field obtained using interface capturing technique 
(ICaT) with FLUENT2D is presented in the lower meridian half-plane, respectively. One can observe a good 
qualitative agreement between both two-dimensional numerical solutions. 
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The validation of the numerical results obtained with the SWIRL2D code against the results obtained 
with FLUENT2D is performed using the velocity components. In this case, the axial and tangential velocity 
components are computed based on the streamfunction using: 

 
rr

vx ∂
∂

≡
ψ1  and 

r
v ψω2≡θ . (10) 

 

 
Fig. 4 – Streamlines for swirling flow with stagnant region for swirl intensity of 1=ζ : SWIRL2D solution 

(upper meridian half-plane) and FLUENT2D axi-symmetric inviscid solution (lower meridian half-plane). 

Figure 5 presents the numerical result obtained with the SWIRL2D code against the results obtained 
with FLUENT2D on the first case ( 1=ζ ) on two radial sections displaced at x = 2 and x = 4, respectively.  

      
Fig. 5 – Streamlines for swirling flow with stagnant region for swirl intensity of 1=ζ : 

SWIRL2D solution (blue dots) and FLUENT2D axi-symmetric inviscid solution (red lines). 

The streamlines in a meridian half-plane for swirl intensity of 2=ζ  are plotted in Fig. 6. Also, the 
numerical solution computed using interface tracking technique (ITrT) with SWIRL2D code (upper meridian 
half-plane) is qualitatively compared against 2D axi-symmetric inviscid flow solution obtained using 
interface capturing technique (ICaT) with FLUENT (lower meridian half-plane). 

 
Fig. 6 – Streamlines for swirling flow with stagnant region for swirl intensity of 2ζ = : SWIRL2D solution (upper meridian 

half-plane) and FLUENT2D axi-symmetric inviscid solution (lower meridian half-plane). 
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A good comparison between the numerical results obtained with the SWIRL2D code against the results 
obtained with FLUENT2D on the second case ( 2=ζ ), on both radial sections displaced at x = 2 and x = 4, 
is shown in Fig. 7.  

       
Fig. 7 – Streamlines for swirling flow with stagnant region for swirl intensity of 2=ζ : 

SWIRL2D solution (blue dots) and FLUENT2D axi-symmetric inviscid solution (red lines). 

5. CONCLUSIONS 

The paper presents a tailored algorithm for computing the two-dimensional swirling flows based on 
interface tracking approach. An augmented functional for computing the fluid interface boundary in the two-
dimensional inviscid swirling flows is developed. The novel variational approach is built by admitting a 
continuous static pressure across the fluid interface between the main annular swirling flow and the inner 
stagnant region. The algorithm is implemented in the SWIRL2D package using a numerical platform. The 
inlet boundary condition incorporates the kinematical constraint on the relative flow angle at the runner 
outlet, as well as integral constrains corresponding to the operating point (i.e. discharge). The inlet boundary 
conditions are implemented within the streamfunction formulation of the Bragg-Hawthorne equation. This is 
not possible within the regular commercial codes (e.g. FLUENT), where all velocity components need to be 
prescribed at the inlet section. The numerical solutions computed with actual algorithm agree well with ones 
obtained with FLUENT code. As a result, the next investigations can exclusively focus on the parametric 
studies related to the configuration of the geometry diffuser since rapid and accurate assessment of the 
swirling flow is possible using this customized swirling flow solver. 
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