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Abstract. The SKINNY family of lightweight block ciphers was introduced at CRYPTO’16 by 
Beierle et al. [1]. In order to encourage the analysis of the SKINNY ciphers, the authors introduced 

the SKINNY Cryptanalysis Competition [2].  In this paper we introduce five rectangle attacks on 16-

round, 18-round and 20-round reduced SKINNY-64-128, three of them having practical complexity. 

We also found new related-key impossible distinguishers on 13 rounds of SKINNY-64-128. In the 

last part of the paper, we present the results obtained by a fixed-point analysis on round-reduced 
SKINNY-64-128. 
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1. INTRODUCTION 

The domain of lightweight cryptography has become a very active research area due to the necessity of 
designing and implementing cryptographic primitives for secure constrained devices. Due to the fact that the 
existing cryptographic primitives were not able to fulfill the requirements of devices with limited resources, 
during the last years, new primitives were created, with better properties regarding the implementation costs, 
the performance and efficiency.  

In the area of lightweight block ciphers, two families of algorithms, SIMON and SPECK [3], were 
proposed by NSA in 2013, both being more efficient than other ciphers. With the openly stated purpose to 
compete with SIMON and SPECK families of ciphers, both in terms of software and hardware performance, 
Beierle et al. introduced, at CRYPTO’16, the SKINNY family of lightweight tweakable block ciphers. 
SKINNY has a Substitution-Permutation-Network structure and supports two block sizes (64 and 128 bits), 
each of them supporting three tweak/key sizes (the block size, twice the block size or three times larger than 
the block size). The notation introduced by the authors of the cipher, and used further in this paper is 
SKINNY-n-t, where n represents the block length and t represents the tweak/key length. 

In order to enhance the cryptanalysis efforts and to encourage the design of practical attacks, the 
authors organized the SKINNY cryptanalysis competition [2]. Five cryptanalysis categories were proposed, 
differentiated by the number of rounds required for the attacks; the versions of SKINNY targeted in the 
competition are the two versions that use 128-bit keys (SKINNY-64-128 and SKINNY-128-128). The first 
phase of the competition has been held from the autumn of 2016, until March 1st, 2017; two research teams 
were designated as winners [4], [5]. The second edition of the competition is in progress, with deadline on 
February 1st, 2018. The rules of the second edition differ from the ones in the first edition only by an 
increased numbers of rounds required for the attacks against SKINNY-64-128. 
 Our contribution. We have focused our research on studying and implementing various types of 
attacks against round-reduced SKINNY-64-128. We introduce new related-key rectangle attacks on 16, 18 
and 20 round SKINNY-64-128, the ones on 16 and 18 rounds having practical time and data complexity. 
Also, the correctness of our practical attacks was confirmed by implementations, while the 20-round attacks 
were validated by various experimental results. These five attacks, detailed below, were submitted to the first 
edition of the SKINNY cryptanalysis competition. The distinguishers used in our attacks are derived from a 
16-round distinguisher with probability 2-17. 
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We also studied existing related-key impossible attacks against SKINNY-64-128 [4] and found new 
distinguishers on 13 rounds of SKINNY-64-128. 

Our research also includes a study of some fixed-point properties on round-reduced SKINNY-64-128.   
 Structure of the paper. The paper is organized as follows: the SKINNY family of lightweight 
tweakable block ciphers is briefly described in Section 2; in Section 3 we synthetize the related work 
regarding existing attacks on round-reduced SKINNY-64-128; Section 4 presents the details of our related-
key rectangle attacks and the results we obtained; the related-key impossible distinguishers are described in 
Section 5; in Section 6 we present a comparison between our attacks and the ones previously introduced; 
details regarding our work on the fixed-point analysis are presented in Section 7; the last part, Section 8, is 
dedicated to conclusions and future work. 

2. RELATED WORK 

With the rapid development of the design of new lightweight block ciphers, the cryptographic 
community concentrated their efforts in testing the security of the newly published ciphers. This section 
specifies papers published in the field of SKINNY family cryptanalysis. 

The best known attacks on round-reduced SKINNY-64-128 are designed in the related-key scenario 
and won the first edition of the SKINNY Cryptanalysis Competition on 22-round attacks [4]. In this paper, 
Liu et al. designed impossible-differential attacks and rectangle attacks for 19 rounds of SKINNY-n-n, 23 
rounds of SKINNY-n-2n and 27 rounds of SKINNY-n-3n.  

The second paper awarded in the first edition of the competition, for the sections dedicated to 18 and 
20-round attacks against SKINNY-64-128, was [5]. The authors introduced two related-key impossible-
differential attacks on 21 and 22 round SKINNY-64-128. 

In [6], Tolba et al. introduced impossible-differential attacks for 18 rounds of SKINNY-n-n, 20 rounds 
of SKINNY-n-2n and 22 rounds of SKINNY-n-3n. Moreover, Sadeghi et al. [7] focused their research on 
impossible differential and zero-correlation linear characteristics of different SKINNY versions. They found 
characteristics for SKINNY-n-n up to 12 rounds. 

3. DESCRIPTION OF SKINNY 

SKINNY [1] is a family of lightweight block ciphers introduced at CRYPTO 2016 Conference. 
Following the TWEAKEY framework [8], the ciphers take as input a tweakey, instead of a key or a 
tweak/key pair. When using a cipher from the SKINNY family, one has the freedom to choose which part of 
the tweakey will represent the key material (the secret key) and which part will represent the tweak 
(considered public). The length of the tweakey (denoted by t) is dependent on the plaintext’s length (denoted 

by n), a cipher from the SKINNY family having three main tweakey sizes: 𝑡 = 𝑛, 𝑡 = 2𝑛 and 𝑡 = 3𝑛. The 
size of a block used as input of the SKINNY ciphers may have 64 or 128 bit length. 

The tweakey is handled as a collection of t/n 4×4 matrices of nibbles (if 𝑛 =  64) or bytes (if 𝑛 =
128). If 𝑡 =  𝑛, the matrix is denoted by TK1. If 𝑡 =  2𝑛, these matrices are denoted by TK1 and TK2. In 
the last case, when 𝑡 =  3𝑛, the notations are TK1, TK2 and TK3. The plaintext is also viewed as a 4×4 
matrix.     

The number of rounds of SKINNY-n-t depends on the block and tweakey sizes, as depicted in the table 
below:  

Table 1 

The number of rounds of SKINNY-n-t 

    𝑡 

𝑛 
𝑛 2𝑛 3𝑛 

64 32 36 40 

128 40 48 56 
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3.1. The round function 

The round function of all SKINNY versions contains five different operations: SubCells, 
AddConstants, AddRoundTweakey, ShiftRows and MixColumn. 

Further on, we will describe the 64-128 version of the SKINNY cipher, our research being conducted 
mainly on this version. 

This version operates on 64-bit blocks (𝑛 = 64, the elements of the internal state are nibbles) and uses 
128-bit tweakey (𝑡 =  128, represented by TK1 and TK2, two 4×4 matrices of nibbles – each of them called 
“tweakey matrices” for the rest of the paper). 

Note: for simplicity, a matrix position [𝑥, 𝑦] is denoted by 4𝑥 +  𝑦. 
 
The SubCells  (SC) operation represents the S-box application on each nibble of the internal state: 

 Table 2 

 The S-box used in SKINNY-64-128 

x 0 1 2 3 4 5 6 7 8 9 a b c d e f 

S(x) c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f 

 
In the AddConstants (AC) operation, the first three values from the first column of the internal state 

are XORed with the last 4 bits of the round constant 𝐶𝑖 (position [0,0]), the first 2 bits of 𝐶𝑖 (position [1, 0]) 
and with the value 2  (position [2,0]); 𝐶𝑖 represents the constant used in the ith round. 

The round constants are obtained using a 6-bit LFSR, with the initial state 000001 and the following 
update function [1]: 

(rc5|| rc4|| rc3|| rc2|| rc1|| rc0)→ (rc4|| rc3|| rc2|| rc1|| rc0 || rc5 ⨁ rc4 ⨁ 1 ) 

The AddRoundTweakey (ART) operation consists of two phases. The first one is performed by 
XORing the first two rows of the internal state with the corresponding nibbles of the two tweakey matrices. 
In the second phase the tweakey is prepared for the next round – this phase actually represents the key 
schedule of SKINNY. The values of the two tweakeys are mixed based on the permutation from Table 3. At 
this point, the nibbles of the first two rows of the second tweakey matrix are modified based on the following 
LFSR update function [1]: 

 

(x3|| x2|| x1|| x0) → (x2|| x1 || x0 || x3 ⨁ x2) 
 

Table 3 

 The tweakey permutation used in SKINNY-64-128 

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

PT 9 15 8 13 10 14 12 11 0 1 2 3 4 5 6 7 

 
The ShiftRows (SR) operation is similar to the one used in the AES cipher; the difference consists in 

the direction in which the rows’ values are circularly shifted – to the right side in the case of ciphers from the 
SKINNY family. As a consequence, the ShiftRows operation is actually the following permutation: 

P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12] 

The MixColumn (MC) operation represents the multiplication of the internal state with the following 
matrix:  

𝑀 = (

1 0
1 0

1 1
0 0

0 1
1 0

1 0
1 0 

) 
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4. BOOMERANG AND RECTANGLE RELATED-KEY ATTACKS 

The boomerang attack is an adaptive chosen plaintext attack designed by David A. Wagner in 1999 [9]. 
The attack is based on differential cryptanalysis, more specifically, on the existence of two highly probable 
differentials, one for the encryption function (called the forward direction) and one for the decryption 
function (called the backward direction).  

We assume that a block cipher E may be described as a composition of two block ciphers with less 

rounds: 𝐸 = 𝐸1  ∘  𝐸0 . The forward differential is a trail ∆ → ∆′  on 𝐸0 with probability p and the backward 
differential is a trail ∇ → ∇′  on 𝐸1

−1 with probability q. 
After finding the differential trails, the attack consists of two phases:  

I. In the first phase, a number of quartets (𝑃1, 𝑃2, 𝑄1, 𝑄2 ) are generated following the steps below, 

with the probability of finding a good quartet equal to p2q2 (𝐸−1 denotes the decryption function 

and 𝐾 denotes the secret key): 
1. generate a random plaintext 𝑃1,  and compute 𝑃2 = 𝑃1  ⨁ ∆ 

2. compute 𝐶1 = 𝐸(𝑃1, 𝐾)  and 𝐶2 = 𝐸(𝑃2,𝐾) 
3. compute 𝐷1 = 𝐶1 ⨁ ∇ and 𝐷2 = 𝐶2 ⨁ ∇ 

4. compute 𝑄1 = 𝐸
−1(𝐷1,𝐾) and 𝑄2 = 𝐸

−1(𝐷2,𝐾) 
5. if 𝑄1⨁𝑄2 = ∆, store the quartet (𝑃1,  𝑃2, 𝑄1, 𝑄2 ). 

II. The second phase of the attack is the same as the one performed in a classical differential attack, 
offering the attacker the ability of computing some parts of the key, considered secret in the first 
place. 

 
The rectangle attack [10] is based on the boomerang attack, the main difference between them being 

the fact that, in the case of a rectangle attack, multiple differentials are used in both directions. As a 

consequence, the probability of finding a good quartet is increased from p2q2 to 𝑝̂ 2𝑞 2, where: 

                                                                    𝑝̂ =  √∑Pr2[∆ →∆′]

∆′

                                                                       (1) 

                                                                  𝑞 =  √∑Pr2[∇ → ∇′]

∇′

                                                                        (2) 

 
The related-key attacks, introduced in 1994 by Biham et al. [11], represent a type of differential 

cryptanalysis where the attacker knows or chooses a relation between two or more keys and studies the 
influence of these relations on the resulting ciphertexts. The relation between the keys can be an arbitrary 
bijective function; the simplest and most used such function is the XOR sum with a constant, an attack 
constructed in this way being very similar to classical differential cryptanalysis. 

In this paper we present five rectangle attacks in the related-key scenario: each encryption/decryption is 
applied using a different tweakey, related to each other, based on some well-chosen differences. The design 
of the two differential trails is influenced by the chosen tweakey differences, denoted ΔF (the tweakey 
difference in the forward direction) and ΔB (the tweakey difference on the backward direction): 

1. Generate a random plaintext 𝑃1  and compute 𝑃2 = 𝑃1  ⨁ ∆ 
2. Compute 𝐶1 = 𝐸(𝑃1,𝐾1)  and 𝐶2 = 𝐸(𝑃2,𝐾2), where 𝐾2 = 𝐾1⨁ΔF 
3. Compute 𝐷1 = 𝐶1 ⨁ ∇ and 𝐷2 = 𝐶2 ⨁ ∇ 
4. Compute 𝑄1 = 𝐸

−1(𝐷1,𝐾3) and 𝑄2 = 𝐸
−1(𝐷2,𝐾4), where 𝐾3 = 𝐾1⨁ΔB and 𝐾4 =

 𝐾2⨁ΔB 
5. If 𝑄1⨁𝑄2 = ∆, store the quartet (𝑃1, 𝑃2, 𝑄1, 𝑄2 ).  

4.1. The 16-round SKINNY-64-128 attack 

In order to find good forward and backward differentials we used a technique based on a customized 
form of the SKINNY-64-128 cipher: we removed the SubCells operation and the LFSR application from the 
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AddRoundTweakey operation; as a consequence, the differences between two internal states are modified in 
a linear manner, as can be seen below:  

 𝐸𝑛𝑐𝑐𝑢𝑠𝑡𝑜𝑚(𝛿,Δ) =  𝐸𝑛𝑐𝑐𝑢𝑠𝑡𝑜𝑚(𝑃,𝑇) ⨁ 𝐸𝑛𝑐𝑐𝑢𝑠𝑡𝑜𝑚(𝑃⨁𝛿,𝑇⨁Δ) 
 

Due to this fact, the input that we used for our customised version of SKINNY-64-128 was actually the 
difference matrix between the internal states (instead of an internal state/plaintext) and the difference matrix 
between all four tweakeys matrices; moreover, the values of the input matrices were either 1 (having the 
significance that the initial plaintexts/tweakeys matrices were different) or 0 (the initial plaintexts/tweakeys 
matrices had the same value).  

In this way, we were able to exploit some properties of the MixColumn operation that influence the 
propagation of differences (the case in which the differences of a column of the internal state are equal, fact 
that leads, in some cases, to differences’ cancellation); also, this approach allowed us to perform exhaustive 
searches on inputs (216 possible differences of the plaintexts and 216 possible differences between the XOR 
sum of each tweakey matrices). 

In the exhaustive search step, in order to decide if a trail is a feasible one, we computed its maximum 

probability (the maximum probability of the S-box appliance, 2−2, multiplied by the number of ones in the 
beginning of each round).  

The last step that we performed, after obtaining some feasible trails, was to find differences (with 
values between 1 and 15) based on the S-box’s XOR profile, that keep the probability as high as possible. 
We used the same approach for the encryption function and for the decryption function, obtaining, for 
different number of rounds, appropriate trails defined as in the classical approach.   

The differential trails that we used in our attack are presented below, in Figure 1 and Figure 2. For 
simplicity, we have denoted with uppercase the hexadecimal values of the differences, and with lowercase 
(except the letters a, b, c, d, e, f, in order to avoid the confusion) all the possible values of the differences on 
a particular position. Also, if two differences from a round are denoted with the same lowercase letter, they 
must be equal (this property is used in the MixColumn step, to reduce the number of differences).  

The blue squares denotes the positions in which the plaintexts are different, but the value of the 
difference between them is not important for the attack.  

In the backward trail, we denoted the inverse of the round operations by “inv” plus the name of the 
operation.   

Our 16 round rectangle attack is based on a set of distinguishers similar to the ones described in Figure 
1 and Figure 2 (the distinguishers follow the same pattern, the positions with no difference will remain the 
same, ∆ and ∇ are fixed, while ∆′ and ∇′ take all possible values).  

Note that the tweakey differences are obtained by XORing the 4 tweakeys matrices (2 matrices from 
each tweakey). In both forward and backward direction, the tweakey differences are the one effectively used 
in the current round - in the backward case, the differences showed in the right column are obtained after 
applying the inverse of the LFSR and the inverse of the tweakey permutation (from the AddRoundTweakey 
function).  

All the tweakey differences are uniquely determined by the initial differences on both tweakeys’ 
matrices. While the difference on the first tweakey matrix remains the same (in the AddRoundTweakey 
operation, on the first tweakey matrix is performed only a permutation), the difference on the second 
tweakey matrix is modified by the LFSR application. 

In our distinguishers, for the forward trail we used the difference 7 on the first tweakey matrix, and 5 
on the second tweakey matrix, while for the backward trail, we used the difference 7 on the first tweakey 
matrix and the difference 15 on the second tweakey matrix. 

Due to the fact that the first application of the SubCells operation is not dependent on the round 
tweakey, we were able to generate plaintext pairs for which, in the first round of the forward differential trail, 
the probability of difference propagation is 1 - we generated an auxiliary plaintext, we computed the 
corresponding auxiliary plaintext by XORing the difference from the forward differential in Figure 1, after 
the first Sbox application. In order to obtain the corresponding initial plaintexts, we applied the inverse of the 
SubCells layer on these auxiliary plaintexts.   
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                   Fig. 1  ̶  Example of forward differential trail used for the 16-round SKINNY-64-128 rectangle attack. 
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Fig. 2  ̶  Example of backward differential trail used for the 16-round SKINNY-64-128 rectangle attack. 

Applying this steps and equations (1) and (2), the probability of finding a good quartet, in our 16-

round attack, is 2−17. The pseudocode of the 16-round related-key rectangle attack on SKINNY-64-128: 
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Phase I 

1. generate 217  ×  𝑛 plaintext pairs (𝑃1, 𝑃𝟐 = 𝑃1  ⨁ ∆), with the differences from round 1 
in the forward trail, after the SubCells application 

2. foreach pair (𝑃1,  𝑃2): 
i. compute 𝐶1 = 𝐸( 𝑆𝐵

−1(𝑃1), 𝐾1)  and  
𝐶2 = 𝐸( 𝑆𝐵

−1(𝑃2),𝐾2) using 16-round SKINNY-64-128, where 𝐾2 = 𝐾1  ⨁ ΔF 
and ΔF is the tweakey difference from the first round of the forward trail 

ii.  compute 𝐷1 = 𝐶1 ⨁  ∇ and 𝐷2 = 𝐶2 ⨁  ∇ 
iii.  compute 𝑄1 = 𝐸

−1(𝐷1,𝐾3) and 𝑄2 = 𝐸
−1(𝐷2,𝐾4), where  

𝐾3 = 𝐾1  ⨁ ΔB, 𝐾4 = 𝐾2 ⨁ ΔB  and ΔB is the tweakey difference from the first 
round of the backward trail 

iv.  if 𝑆𝐵(𝑄1) ⨁𝑆𝐵(𝑄2) =  𝑃1  ⨁𝑃2 then add the quartet (𝑃1,  𝑃2, 𝑄1, 𝑄2 ) to the 

quartet list 
 

Phase II 

foreach good quartet (𝑃1, 𝑃2, 𝑄1, 𝑄2 ) stored in the quartet_list 

1. compute the corresponding ciphertexts quartet (𝐶1, 𝐶2, 𝐷1, 𝐷2) 

2. foreach possible combination of values for the 4 key nibbles 𝑇𝐾1[2]⨁𝑇𝐾2[2], 
𝑇𝐾1[3]⨁𝑇𝐾2[3], 𝑇𝐾1[7]⨁𝑇𝐾2[7], 𝑇𝐾1[8]⨁𝑇𝐾2[8]: 

i. partially encipher (𝑃1,  𝑃2 ) and (𝑄1, 𝑄2 ) with 2 full rounds and 1 incomplete round 
(only SB and AC operations) – the remaining tweakey XOR sums may be 0 

ii.  if the difference of the nibble in position 2 of the partially enciphered pairs is 
equal to 12, increment a counter corresponding to the current combination of 
values of the 4 key nibbles 

iii.  the correct values of the key nibbles to be recovered are the ones with the highest 
frequency 

Fig. 3  ̶  The related-key rectangle attack pseudocode for 16-round SKINNY-64-128. 

Regarding the attack’s implementation, the following observations are useful: 
- the number of good quartets needed in order to launch a successful attack is n = 8; 
- we never obtained a single combination of values with the maximum frequency. In fact, in the 

key recovery phase we determined unique values for 3 key nibbles (the correct ones) and 2 
possible values for the remaining nibble (the correct one is always between them); 

- the time complexity of our attack is approximately 222 encryptions/decryptions, computed as 
follows: 

 phase I: 217 (from the probability of finding a good quartet) × 4 (the number of 
encryptions/decryptions per quartet) × 8 (the number of good quartets used in our attack) +  

 phase II: 8 (the number of good quartets used in our attack) × 216 (the exhaustive search of 
the 4 tweakey nibbles) 

- the data complexity of our attack is 217 × 2 × 8 plaintext/ciphertext pairs, while the stored data is 
of n quartets (n × 32 bytes). 

4.2. The 18-round SKINNY-64-128 attacks 

We designed two 18-round attacks on SKINNY-64-128, in two different scenarios (with known or 
unknown tweakey nibbles). The forward and backward differential trails (used in both the attacks) are based 
on the ones described in the previous section, each of them being extended with one round in the beginning – 
in consequence, the forward differentials have 10 rounds and the backward differentials have 8 rounds. 
Figure 4 depicts the first 2 rounds of the forward trails, while Figure 5 contains the last 2 rounds of the 
backward trails. 
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Fig. 4  ̶  The first two rounds of the forward differentials for 18-round attacks.                       

      

  
  

Fig. 5  ̶  The last two rounds of the backward differentials for 18-round attacks. 

4.2.1. The attack on 18-round Skinny-64-128 with unknown tweakey  

In our distinguishers, for the forward trail we used the difference 7 on the first tweakey matrix, and the 
difference 10 on the second tweakey matrix, while for the backward trail, we used the difference 7 on the 
first tweakey matrix, and the difference 14 on the second tweakey matrix.  

In this case, the probability of finding a good quartet is approximatively 2-45. The pseudocode of our 
attack is described below: 

The time complexity of our attack is approximately 251 encryptions/decryptions, computed as follows: 

 Phase I:  245 (the probability of finding a good quartet) × 4 (the number of 
encryptions/decryptions per quartet) × n (the number of good quartets used in our attack) +  

 Phase II: n (the number of good quartets used in our attack) × 24 (the exhaustive search of 
the one nibble) × (1+1) (the exhaustive search is performed independently for each of the two 
tweakey sum nibble found) 

The data complexity of our attack is 245 × 2 × n plaintext/ciphertext pairs, while the stored data is of n 
quartets (n × 32 bytes). In the case of this attack, we consider n = 16 sufficient for the efficiency of the key 
recovery phase.  

4.2.2 The attack on 18-round Skinny-64-128 with known tweakey nibbles 

This attack differs from the previous one by the hypothesis that the attacker knows the values of 

𝑇𝐾1[0]⨁𝑇𝐾2[0], 𝑇𝐾1[2]⨁𝑇𝐾2[2], 𝑇𝐾1[4]⨁𝑇𝐾2[4] (12 known bits) or the values of the following 
nibbles: 𝑇𝐾1[0], 𝑇𝐾2[0], 𝑇𝐾1[2], 𝑇𝐾2[2], 𝑇𝐾1[4] and 𝑇𝐾2[4] (24 known bits).  

Based on this new hypothesis, the probability of finding a good quartet is 2-29, significantly higher than 

the one from the previous attack. We randomly generated 𝑝1 and computed  𝑝𝟐 = 𝑝1  ⨁ ∆
′, where ∆′ is the 

difference from the round 2 of the forward trail (we used x = 2), after the SubCells application. We 
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constructed 𝑃1 = 𝑓(𝑝1 ) and 𝑃2 = 𝑓(𝑝2 ), where 𝑓(𝑥) = 𝑆𝐵−1(𝐴𝑅𝑇(𝐴𝐶(𝑆𝑅−1(𝑀𝐶−1(𝑆𝐵−1(𝑥)))))); the 
ART layer is applied using the zero value on the positions with unknown nibble sum. Due to this approach in 
the phase I of the attack, the probability of finding a good quartet increases from 2-45 to 2-29. 

 
Phase I 

i.  generate 245  ×  n plaintext pairs (𝑃1 , 𝑃𝟐 = 𝑃1  ⨁ ∆), with the differences 
corresponding to the first round, after the SubCells application 

ii.  foreach pair (𝑃1,  𝑃2): 
iii.  compute 𝐶1 = 𝐸( 𝑆𝐵

−1(𝑃1),𝐾1) and 𝐶2= 𝐸( 𝑆𝐵
−1(𝑃2),𝐾2) using 18-round 

SKINNY-64-128, where 𝐾2 = 𝐾1  ⨁ ΔF and ΔF is the tweakey difference from the 
first round of the forward trail 

iv.  compute 𝐷1 = 𝐶1  ⨁  ∇ and 𝐷2 = 𝐶2 ⨁  ∇ 
v. compute 𝑄1 = 𝐸

−1(𝐷1,𝐾3) and 𝑄2 = 𝐸
−1(𝐷2,𝐾4), where 𝐾3 = 𝐾1  ⨁ ΔB,  

     𝐾4 = 𝐾2 ⨁ ΔB  and ΔB is the tweakey difference from the first round of the        

      backward trail  
vi.  if  𝑆𝐵(𝑄1) ⨁𝑆𝐵(𝑄2) =  𝑃1  ⨁𝑃2 then add the quartet (𝑃1, 𝑃2, 𝑄1, 𝑄2 ) to the 

quartet_list 
 

Phase II 

        foreach good quartet (𝑃1, 𝑃2, 𝑄1,  𝑄2 ) from the quartet_list 

i.  compute the corresponding ciphertexts quartet (𝐶1, 𝐶2, 𝐷1, 𝐷2 ) 
ii.  foreach possible value of TK118[3]⨁TK218[3] where TKi18[j] is the j th nibble of 

the tweakey i, from the round 18:  
1. partially decipher (𝐶1, 𝐶2) and (𝐷1, 𝐷2) with 1 incomplete round (only the 

inverse of MixColumn, the inverse of ShiftRows and AddConstants) 
2. if the differences on the nibbles from positions 3, 11 and 15 of the partially 
decrypted pairs are equal (after applying the XOR with the current value of the 
key nibble and the inverse of the SubCells operation), increment a counter 
corresponding to the current value of the key nibble 

iii.  foreach possible value of TK118[7]⨁TK218[7]: 
1. compute 𝐶1 

′ = 𝑀𝐶−1(𝑆𝑅−1(𝐶1 )), 𝐶2
′ = 𝑀𝐶−1(𝑆𝑅−1(𝐶2 )) 

2. compute 𝐷1 
′ = 𝑀𝐶−1(𝑆𝑅−1(𝐷1 )),𝐷2 

′ = 𝑀𝐶−1(𝑆𝑅−1(𝐷2 )) 

3. compute 𝑐𝑖 = 𝑆
−1(𝑆−1 (𝐶𝑖 

′[7] ⨁𝑇𝐾118[7]⨁𝑇𝐾218[7]) ⨁ 𝑆−1 (𝐶𝑖 
′[15])) 

4. compute𝑑𝑖 = 𝑆
−1(𝑆−1 (𝐷𝑖 

′[7] ⨁𝑇𝐾118[7]⨁𝑇𝐾218[7]) ⨁ 𝑆−1 (𝐷𝑖 
′[15])) 

5. if 𝑐1⨁𝑐2 = 8 and 𝑑1⨁𝑑2 = 8, increment a counter corresponding to the 
current value of the key nibble 

iv.  the correct key nibbles are between the ones with the highest frequencies. 

Fig. 6  ̶  Related-key rectangle attack pseudocode for 18-round SKINNY-64-128, with unknown tweakey nibbles. 

The pseudocode of the attack is described in Figure 7.   
The time, data and memory complexity is computed as is the previous attack. In our implementation, 

we used 𝑛 = 4 quartets: the overall time complexity is approximatively 233 encryptions, the data complexity 
is 232 plaintexts/ciphertexts pairs and the needed memory is of 4 quartets (128 bytes).  

4.3 The 20-round SKINNY-64-128 attacks 

The previous related-key rectangle attacks for 18-round SKINNY-64-128 cipher can be extended to 
20-round attacks by adding one round in the beginning of the forward differentials and one round to the final 
of the backward differentials, as showed in Figure 8 and Figure 9.  

We have designed two 20-round attacks, one in which we consider the tweakey unknown and one in 
which some nibbles of the tweakey are considered known.  
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Phase I 

1. generate 229  ×  n pairs (𝑝1,  𝑝2 = 𝑝1  ⨁ ∆
′), with the differences from the second round 

of the forward trail, after the SubCells application  

2. foreach pair (𝑝1,  𝑝2): 
i. compute 𝑃1 = 𝑓(𝑝1 ) and 𝑃2 = 𝑓(𝑝2 ) as described above 

ii. compute 𝐶1 = 𝐸( 𝑃1, 𝐾1) and 𝐶2= 𝐸( 𝑃2,𝐾2) using 18-round  
SKINNY-64-128, where 𝐾2 = 𝐾1  ⨁ ΔF and ΔF is the key difference from the first 
round of the forward trail 

iii. compute 𝐷1 = 𝐶1 ⨁  ∇ and 𝐷2 = 𝐶2 ⨁  ∇ 
iv. compute 𝑄1 = 𝐸

−1(𝐷1,𝐾3) and 𝑄2 = 𝐸
−1(𝐷2,𝐾4), where 𝐾3 = 𝐾1  ⨁ ΔB,  

  𝐾4 = 𝐾2 ⨁ ΔB  and ΔB is the key difference from the first round of the backward    
  trail  

v. if  𝑓−1(𝑄1) ⨁𝑓
−1(𝑄2) = 𝑝1⨁𝑝2 then add the quartet (𝑃1, 𝑃2, 𝑄1, 𝑄2) to the    

  quartet_list 
Phase II 

foreach good quartet (𝑃1, 𝑃2, 𝑄1, 𝑄2) stored in the quartet_list 

1. compute the corresponding ciphertexts quartet (𝐶1, 𝐶2, 𝐷1, 𝐷2) 
i. foreach possible value of TK118[3]⨁TK218[3], where TKi18[j] is the jth nibble of 

the tweakey i, from the round 18:  
- partially decipher (𝑪𝟏, 𝑪𝟐) and (𝑫𝟏, 𝑫𝟐) with 1 incomplete round (only the 

inverse of MixColumn, the inverse of ShiftRows and AddConstants) 
- if the differences on the nibbles from positions 3, 11 and 15 of the partially 

decrypted pairs are equal (after XORing the nibbles from position 3 with the 
current value of the key nibble and applying the inverse of the SubCells 
operation, on the nibbles from positions 3, 11 and 15), increment a counter 
corresponding to the current value of the key nibble 

ii.  foreach possible value of TK118[7]⨁TK218[7]: 
- partially decipher (𝐶1, 𝐶2) and (𝐷1,  𝐷2) with 2 full rounds (only the nibbles 

involved in order to compute the nibble in position 9) 

- compute 𝐶1 
′ = 𝑀𝐶−1(𝑆𝑅−1(𝐶1 )), 𝐶2

′ = 𝑀𝐶−1(𝑆𝑅−1(𝐶2 )) 
- compute 𝐷1 

′ = 𝑀𝐶−1(𝑆𝑅−1(𝐷1 )), 𝐷2 
′ = 𝑀𝐶−1(𝑆𝑅−1(𝐷2 )) 

- compute 

 𝑐𝑖 = 𝑆
−1(𝑆−1 (𝐶𝑖 

′[7] ⨁𝑇𝐾118[7]⨁𝑇𝐾218[7]) ⨁ 𝑆−1 (𝐶𝑖 
′[15]))  

- compute 
 𝑑𝑖 = 𝑆

−1(𝑆−1 (𝐷𝑖 
′[7] ⨁𝑇𝐾118[7]⨁𝑇𝐾218[7]) ⨁ 𝑆−1 (𝐷𝑖 

′[15])) 
- if 𝑐1⨁𝑐2 = 8 and  𝑑1⨁𝑑2 = 8, increment a counter corresponding to the 

current value of the key nibble 

iii.  the correct key nibbles are between the ones with the highest frequencies 

Fig. 7  ̶  Related-key rectangle attack pseudocode for 18-round SKINNY-64-128, with known tweakey nibbles.  

In our distinguishers, for the forward trail we used the difference 7 on the first tweakey 
matrix, and the difference 10 on the second tweakey matrix, while for the backward trail, we used 
the difference 7 on the first tweakey matrix, and the difference 14 on the second tweakey matrix.  

4.3.1. The attack on 20-round Skinny-64-128 with unknown tweakey  

The pseudocode of this attack is similar to the one used for the 18-round attack (described 
in Figure 6), with the difference that the encryption and the decryption functions will be applied 
for 20 rounds of SKINNY-64-128 and the difference between the plaintexts is the one described 
in Figure 8. Also, in the key recovery phase, the exhaustive search is performed on the tweakey 

nibbles 𝑇𝐾120[13]⨁𝑇𝐾220[13] and 𝑇𝐾120[11]⨁𝑇𝐾220[11]. 
The probability of finding a good quartet for this attack is approximately 2-85. 
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Fig. 8  ̶  The first three rounds of the forward differentials for the 20-round attacks. 

 

Fig. 9  ̶  The last three rounds of the backward differentials for the 20-round attacks. 

The time complexity of this attack is approximately 291 encryptions/decryptions, computed as a sum of 
the following two quantities: 

 Phase I:  285 (the probability of finding a good quartet) × 4 (the number of 
encryptions/decryptions per quartet) × n (the number of good quartets used in our attack)  

 Phase II: n (the number of good quartets used in our attack) × 24 (the exhaustive search for 
one nibble) × (1+1) (the exhaustive search is performed independently for each of the two 
tweakey sum nibbles). 

The data complexity of our attack is 285 × 2 × n plaintext/ciphertext pairs, while the stored data is of n 
quartets (n × 32 bytes). In the case of this attack, we consider n = 16 sufficient for the efficiency of the key 
recovery phase. 

4.3.2. Attack on 20-round Skinny-64-128 with known tweakey  

This attack is also similar to the 18-round attack that uses the hypothesis that some of the tweakey 
nibbles are known. In the case of the 20-round attack, the hypothesis used is that the attacker knows the XOR 
sum between the two matrices of the initial tweakey, on the positions 0, 1, 2, 3, 5 and 7 (24 known bits) or 
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the actual values of the two matrices on the mentioned positions (48 known bits). This new hypothesis 
allows the attacker to generate good quartets, in the same manner as the one described in the section 4.2.2, 
with an improved probability of approximatively 2-61. 

The time complexity of this attack, computed in the hypothesis that 𝑛 = 16 is a sufficient number of 
good quartets, is approximately of 267 encryptions, the data complexity is approximately 265 pairs of 
plaintexts/ciphertexts, while the memory needed is the same, 512 bytes, used for good quartets storage. 

4.4. Versatility of the related-key rectangle attacks 

All the related-key rectangle attacks described above, using exactly the same differentials and 
pseudocode, can be also applied for the Skinny-64-192 version, using zero differences in the third tweakey 
matrix. By using the same trails structures with other difference values (and, implicitly, other probabilities), 
similar attacks could be applied for up to 20-round Skinny-128-256 and 20-round Skinny-128-384. 

5. IMPOSSIBLE RELATED-KEY DISTINGUISHERS  

The impossible differential cryptanalysis was introduced independently by Knudsen [11] and Biham et 
al. [12].  Opposite to the classical differential approach, where the main idea is to find a differential trail with 
high probability, in the case of impossible differential cryptanalysis, a differential trail with probability equal 
to zero is searched. If an impossible input-output difference is obtained when using some values of the key, 
these values must be wrong.  

Using this observation, a big part of the possible keys may be filtered, obtaining a small set of 
potentially correct keys. If the key filtering step does not provide a unique key, the right key values may be 
found by performing an exhaustive search on the remaining keys. 
 In our research we focused on finding impossible differential trails for SKINNY-64-128, in the related-
key scenario. We managed to construct 7 impossible differential trails on 11-round SKINNY-64-128 that are 
related to the one used by Ankele et al. in [5]. Actually, we proved the fact that, if we use only two nibbles of 
the tweakey difference, positioned on the row 3 or 4 of the tweakey matrices (the difference on the two 
tweakey matrices is on the same position), then we can construct an 11-round impossible differential trail.  
 Similar to the research work from [5], in the first phase of our research, in order to design the 
impossible differential trails, we only looked for the positions with zero difference.  
 We also studied the possibility of constructing impossible differential trails that take into account the 
non-zero values of the differences, the contradiction being obtained in the case that two non-zero differences 
are not equal. In this context, we analysed some custom versions of the SKINNY-64-128 Sbox’s XOR 
profile. 
 More specifically, we computed the probability that an output difference is obtained after two or three 
consecutive applications of the S-box function. As a consequence, we have shown that, after 3 consecutive 
Sbox applications, every output value (except 0) may be generated using any of the possible input values.  
 We focused on the exploitation of the input-output pairs of differences that have 0 probability of 
appearance after two consecutive applications of the Sbox; we found impossible distinguishers similar to the 
one described in [5].  
 In the same context, we looked for impossible differential trails up to 15 rounds. Our search used the 
following hypotheses: the plaintexts and ciphertexts used are equal, while the tweakey takes all the possible 
differences on one nibble of TK1 and the corresponding nibble of TK2.  
 The maximum length of such impossible distinguishers found by our implementation was 13 rounds, 
following two possible patterns: one of them is similar to the one used by Ankele et al. in [5] (the 11-round 
distinguisher is extended, in the beginning, with two rounds in which the tweakey and plaintext differences 
are zero), while in the other pattern is extends the 11-round differential with two rounds at the end, using the 
same zero difference property on the tweakey and ciphertexts.  
 In our implementation, when searching for an n rounds impossible differential, we looked for all 
possible combinations of forward-backward trails. One example of another 11-round distinguisher, 
constructed by our approach, is shown in the Figure 10.  
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Fig. 10  ̶  Impossible differential of SKINNY-64-128 in the related-key scenario. 
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6. SUMMARY OF RESULTS 

Our results and the ones obtained in previous attacks on round-reduced SKINNY-64-128, are 
summarized in Table 4. As far as we know, our paper introduces the first practical attacks against 16-round 
and 18-round SKINNY-64-128. We do not know if the other mentioned attacks, when reduced to 16 or 18 
rounds, become practical as well.  

Table 4  

Summary of attacks on round-reduced SKINNY-64-128 

7. FIXED POINTS ANALYSIS 

In this paper, we denote by fixed point a (plaintext, tweakey) pair for which the ciphertext, obtained 
after applying a round-reduced version of SKINNY-64-128, is equal to the original plaintext.  

The initial approach was a heuristic one, based on genetic algorithms, and led to the discovery of fixed 
points for 2-round SKINNY-64-128. The genetic algorithms paradigm [14] has been successfully applied for 
various optimization problems. In the context of the genetic algorithms, the solutions are usually called 
individuals; in our case, the individuals are represented by tweakeys. The goal of our approach was to 
minimize the number of differences between the plaintext and the corresponding ciphertext, when using 
these tweakeys. 

The function that we wanted to optimise (called the objective function) was the number of differences 
between the (randomly) generated, but fixed plaintext and the ciphertext, obtained using individuals – a 
population of tweakeys. The purpose of the algorithm was finding a global minimum of the objective 
function, and, in consequence, a fixed point. By increasing the number of rounds, the genetic algorithms 
found only local solutions (pairs with a small number of differences). Examples of results obtained using this 
approach are described in the following table.  

Table 5  

Examples of the heuristic approach results regarding the fixed-point analysis 

Rounds number Local minimum Plaintext Tweakey 

2 0 0x42d6cd7f101d1bc5 0x1a7acca08aac77def7f03dcbe7591832 

3 2 0x00e1770b00dd0000 0xdd6c0000547300af00ff000000001000 

4 5 0x9100000000009b00 0x000000540000140000000000dd0000 

 
A detailed description of the genetic algorithm scheme and the specific settings we used in our research 

is out of the goal of this paper. More information regarding the applicability of genetic algorithms in 
cryptanalysis can be found in [15, 16]. 

Reference Attack type 
Rounds 
number 

Tweak 
size 

(bits) 

Complexity 

Time Data Memory 

[5] 

Related-
Key 

Impossible 
Differential 

21 0 274,6 272  
[5] 22 48 271 271  

[4] 
Impossible 
Truncated 
Differential 

23 0 2124,2 262.47 2124 

[4] 

Rectangle 

21 0 287,9 254 254 

[4] 22 0 2109,9 263 263 
Section 4.1 16 0 222 222 28 

Section 4.2.1 18 0 251 251 29 

Section 4.2.2 18 24 233 233 27 

Section 4.3.1 20 0 291 291 29 

Section 4.3.2 20 48 267 267 29 

[6] 
Single-
Key 

Impossible 
Differential 

20 0 2121.08 247,69 274,69 
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The second approach, inspired by the results obtained using the heuristic approach, is an algebraic one, 
based on the system of equations corresponding to the round-reduced versions of the cipher. This approach 
allowed us to find fixed-points for 2, 4, 6 and 8 round-reduced SKINNY-64-128.  

Let us denote the 1-round encryption function by 𝐸𝑛𝑐(𝑝, 𝑡𝑖), where by 𝑝 we denote the internal 

state/plaintext and by 𝑡𝑖 we denote the tweakey used for the round 𝑖. For example, a 2-round SKINNY-64-
128 will be represented by 𝐸𝑛𝑐(𝐸𝑛𝑐(𝑝, 𝑡1), 𝑡2). 𝐸𝑛𝑐

𝑛(𝑝,𝑇) represents the 𝑛-round encryption of the 
plaintext 𝑝, using the initial tweakey 𝑇. Also, let us denote the 1-round decryption function by 𝐷𝑒𝑐(𝑐, 𝑡𝑖). 

In order to reduce the complexity of the equations, we used a meet-in-the-middle based technique. For 

the 2-rounds analysis, instead of writing the equations corresponding to 𝐸𝑛𝑐(𝐸𝑛𝑐(𝑝, 𝑡1), 𝑡2) = 𝑐, we wrote 
the equations corresponding to 𝐸𝑛𝑐(𝑝, 𝑡1) = 𝐷𝑒𝑐(𝑐, 𝑡2). We were able to prove that, for any randomly 
generated plaintext, there exists 264 tweakeys such that the pair (plaintext, tweakey) is a fixed point. Also, for 
any randomly generated plaintext, we were able to generate all such tweakeys.  

In order to find 4, 6 and 8-round fixed-points, we searched for the (plaintext, tweakey) pairs that have 
one more property: 

                                                               𝐸𝑛𝑐2𝑛(𝑝,𝑇) = 𝐸𝑛𝑐𝑛(𝑝,𝑇) = 𝑝                                                     (3)  
where 2𝑛 =  4,6 or 8. 

This new property allowed us to reuse the equations corresponding to the 𝑛-round encryption, so the 
complexity of these equations is again decreased.  

For the 4-round encryption, we were able to prove that, for any possible plaintext 𝑝, there exists a 
unique tweakey 𝑇 such that the pair (𝑝,𝑇) is a fixed-point for the 2- and 4- round reduced SKINNY-64-128; 
we were also able to generate, for any randomly generated 𝑝, the tweakey that has the property previously 
mentioned. 

In the case of 6-round and 8-round SKINNY-64-128 encryption, for any randomly chosen plaintext, 
we were able to generate, if any, all the tweakeys for which the equation (3) holds. For both the 6-round and 
8-round encryption, we found plaintexts for which there exists up to 5 tweakeys such as the (plaintext, 
tweakey) pair is a solution for equation (3). We also found plaintexts for which there are no tweakeys with 
the previously described property. Some examples of the results that we obtained are listed in Table 6. 

Table 6  

Examples of 6-rounds and 8-rounds fixed points 

Rounds number Plaintext Tweakey 

6 0x0000000000000011 

0xa7377562c9b432d12cfa189995daf1d9 

0x1cd2dca2bfa801c83639e634624cdf6b 

0xc47681e35dacba9096a6052b754164e3 

0xb763abbf21be19d6c1940438a64a981d 

0x6d8e18dd135fb163caf3a0ea5dd2cf83 

8 0x401a4911c9645c20 

0x0f44a9a7c0ae176d1a47208279b9ec95 

0x3760f977058522e1e32bd643cffa16f0 

0x402a43bce6ac433105865444570fcf1a 

0xf45d3a65d94ca3984313bc38d05d3de1 

0xa503657717d8f618ceb701fd322d65fa 

8. CONCLUSION. FUTURE WORK 

In this paper we propose some new related-key attacks for round-reduced SKINNY-64-128 lightweight 
block cipher. We successfully designed five attacks on 16, 18 and 20 rounds of SKINNY-64-128 (also 
suitable for SKINNY-64-192), in both the hypothesis that the tweakey has or has not a tweak. To the best of 
our knowledge, these are the first practical attacks introduced against any cipher of the SKINNY family. We 
have also focused our research on finding new properties of round-reduced SKINNY-64-128, introducing 
some fixed point analysis on up to 8 rounds and some new impossible related-key distinguishers.  

Our future work will include, but not limit to, some new approaches that will allow us to reduce the 
complexity of our attacks and to attack a higher number of rounds. We also intend to continue our research 
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regarding the fixed-points analysis and its possible applicability in different scenarios of attack, targeting a 
higher number of rounds of SKINNY-64-128 and also other ciphers from the SKINNY family. 
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