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Abstract. In this paper we study the probability of false acceptance regarding the statistical tests 

specified by NIST SP 800-22. Based on the central limit theorem, we compute the probability of 

accepting a false hypothesis and carry out experimental results for the following NIST tests: frequency, 

block frequency, runs, Fourier discrete (spectral) and serial test. 
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1. INTRODUCTION AND MOTIVATION 

Statistical hypothesis testing is a mathematical technique, based on sample data and used for supporting 
the decision making-process on the theoretical distribution of a population. In the case of statistical analysis 

of a cryptographic algorithm, the sample is the output of the algorithm from different inputs for the key and 
plain text. Because we deal with sample data from the population, the decision process of the population’s 

probability distribution is prone to errors. To meet this challenge, we model the decision making-process 
with the aid of two statistical hypotheses: the null hypothesis denoted by H0 - in this case, the sample does 
not indicate any deviation from the theoretical distribution - and the alternative hypothesis HA - when the 

sample indicates a deviation from the theoretical distribution. There can be three types of errors: 
• first type error (also known as the significance level), which is the probability of rejecting the null 

hypothesis when it is true: α = P(reject H0|H0 is true); it is recommended that the level α be selected in 

the range [0.001,0.01]; 

• second type error, which represents the probability of failing to reject the null hypothesis when it is 

false: β = P(accept H0|H0 is false); the complementary value of β, that is 1−β =P(reject H0|H0 is false) 

represents the test’s power; 

Table 1  

Relation between the truth of the null hypothesis and outcomes of the test 

Conclusion 
Real situation 

H0 is true H0 is false 

Reject H0 α (false positive result) 1 − β (true positive result) 

Accept H0 1 − α (true negative result) β (false negative result) 

• third type error happens when we ask a wrong question and use the wrong null hypothesis. This error 

is less analytical and requires more care before starting our analysis. 

Notice that the two errors α and β can’t be minimized simultaneously since the risk β increases as the 

risk α decreases and vice-versa. Therefore, one solution is to have the value of α under control and to compute 
the error β. Table I presents the relation between the truth of the null hypothesis and outcomes of the test. 
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From cryptographic point of view, statistical tests are useful in estimating the entropy which is a measure 
of the amount of information needed for an attacker to find the encryption key or to predict the nonce values. 

If one statistical test finds some predictable information in the analyzed sample, then it will reject the null 
hypothesis. 

The pseudorandom bit generators (PRBGs) are considered cryptographically secure if they pass the next-
bit test. This test states that no polynomial time algorithm, when given the first l-bits of the output, can predict 
the l+1 bit with a probability significantly greater than 0.5. Moreover, if part of the PRBG is compromised, 

it should be impossible to reconstruct the stream of random bits prior to the compromise. Andrew C. Yao 
[17] proved that a PRBG passes the next-bit test only if it passes every polynomial time statistical test. 

Because this isn’t feasible, a representative polynomial time statistical testing suite is necessary. 
Representative examples of such suites are Crypt-XS , DIEHARD, STS SP 800-22 and TestU01 statistical 

tests. Because STS SP 800-22 is a standard, we shall focus on it rather than others tests suites. 
In order to reduce the second type errors in NIST SP800-22 suite, Y.Wang ([11]) proposed statistical 

distance based testing techniques and LIL based testing techniques for (pseudo) random generators.  
The analysis plan of the statistical test includes decision rules for rejecting the null hypothesis. These 

rules can be described in two ways: 
Decision based on P-value. In this case, we will consider f to be the value of the test function and will 

compare the P-value, defined as P(X < f), with the value α and will decide on the null hypothesis if P-value 
is greater than α. 

The ”critical region” of a statistical test is the set which causes the null hypothesis to be rejected; the 
complementary set is called the ”acceptance region”. In the acceptance region, we shall find the ideal results 

of the statistical test. 
Because for each statistical test the rejection rate α is a probability, which is ”approximated” from the 

sample data, we need to compute the minimum sample size necessary to achieve the desired rejection rate α. 
Also, the sample must be independent and governed by the same distribution. In Figure 1, we present the 

graphical interpretation related to the errors of a statistical test in case of testing the null hypothesis H0 against 
the alternative one, H1. The reference distribution in this case is the normal one. 

We recall that the most important functions required by the test suite are the gamma function, the 
incomplete gamma function, the standard normal (cumulative distribution) function, the complementary 

error function and the chi-square distribution. 
The gamma function is given by 

. 

 

Fig. 1 – Critical region of a statistical test at 0.01 level of significance. 

The formula for the incomplete gamma function is: 
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, 

with the limiting values igamma(a,0) = 0 and igamma(a,∞) = 1. The standard normal distribution is defined 

as follows 

 

A special case of the incomplete gamma function is the complementary error function: 

 

 

The chi-square distribution with ν degrees of freedom, widely used in inferential statistics such as 

hypothesis testing, results when ν mutually independent standard normal random variables are squared and 
summed. Its probability density function is defined by 

 

The cumulative distribution function of a chi-square random variable is  

Based on the above special functions, in Table II we can see the reference distribution of some NIST 

statistical tests to be approached in the sequel. 

The fundamental theorem of statistics, also known as the strong law of large numbers, can be stated in 

two different ways: 
1) the first form is derived from Liapounoff-Lindeberg’s theorem and states that if (fn) is a sequence of 

independent random variables with the same distribution (expectation m and variance σ) then, for large 

n, one has: 

 

Table 2  

The reference distribution of five NIST statistical tests 

Test Distribution Parameters 

Frequency (monobit) test half normal n = the length of bit stream 

Frequency Test within a Block χ2(N) n = the length of bit stream 

M = the length of each block 

Runs Test normal n = the length of bit stream 

Discrete Fourier Transform (Spectral) Test normal n = the length of bit stream 

Serial Test χ2(2m − 1) n = the length of bit stream m = the length of each 

block 

 

2) the second form is derived from De Moivre’s theorem and states that if (fn) is a sequence of independent 

Bernoulli random variables with P(X = 1) = p and P(X = 0) = 1 − p then, for large n, one has: 

 . 
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The De Moivre form is usually used for randomness testing of binary sequences. Even in the case when 
we have small values of n and a and b are very close one to another, the above formulas are still good 

estimations. 

2.EVALUATING THE SECOND TYPE ERROR 

Suppose that we are given a binary sequence produced by a random Bernoulli variable X such that                  
P(X = 1) = p and P(X = 0) = q = 1 − p. Using the strong law of large numbers, we test the null hypothesis   

H0 : p = p0 against the alternative hypothesis H1 : p = p1, with p1 ≠ p0. In what follows, we derive analytical 
formulas which compute the probability β for the following tests: a) frequency monobit test, b) frequency 
test within a block, c) runs test, d) discrete Fourier transform (spectral) test and e) serial test. 

Suppose that the bit stream has the length n and let q0 = 1 − p0 and q1 = 1 − p1. For each of the above 
mentioned tests we give an estimation of the second error β. 

a) Frequency (monobits) test. This test investigates whether the frequency of ones in a sequence of 

length n is approximatively n/2, as would be expected under an assumption of randomness. For this test, the 

second error probability β has been computed in [9] and is as follows: 

, 

where 𝑢1−
𝛼

2
 and 𝑢𝛼

2
 stand for quantiles of the standard normal distribution. 

b) Frequency test within a block. This test is a generalization of the first one, where the number of 

blocks is one. The test determines if the number of ones and zeroes in an M− bit block are about the same. 

For any block i = 1, [𝑛/𝑀],̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  the proportion πi of ones is computed by means of a chi-square statistics. As 

specified in [6], the block size M and the number of blocks N should be selected such that M ≥ 20 and MN ≤ 

n < 100M. 

 

, 

where M is the length of a block,  stands for quantile of the chi-square distribution with N=[
n

M
] 

 degrees of freedom. 

c) Runs test. The runs test is based on the distribution of the total number of runs, defined as 

uninterrupted substrings of consecutive 1’s (one-runs) or consecutive 0’s (zero-runs) and denoted by Vn. The 

test also measures the oscillation speed between zeros and ones. Let π be the proportion of ones across all n 

bits of the sequence. Then the distribution of 
Vn -2nΠ(1-Π)

2√2nΠ(1-Π)
 can be approximated by the standard normal 

distribution. The runs test is applicable provided that |Π-0.5|≤ 2 √n⁄ . 
 



5 New results concerning the power of NIST randomness tests  385 

 

Where  and  stand for quantiles of the standard normal distribution. 

d) Discrete Fourier transform (spectral) test. Based on a spectral method, this test is looking for the 

peak heights in the sequence of the discrete Fourier Transform images associated to the bit stream. Under an 

assumption of randomness, the values obtained from the test should not exceed the threshold value T = 0.95. 

The algorithm computes the number N1 of peaks in the subsequence given by the first half of the sequence, 

that are less than T. 

 

e) Serial test. The serial test with the parameter m, verifies the uniformity of distributions of patterns 

of given length m.  

The input size recommended in [7] should verify m < [log2n] − 2. 

In what follows we are concerned with a version of this test, that presented by Maurer in [14].  

Consider the set of integers 0 ≤ i ≤ 2m − 1 and for any i, let ni be the number of occurrences of the binary 
representation of i.  

The test function in this case deals with the normalized variable 

which is for large n very well approximated by the χ2 distribution with 2m − 1 degrees of freedom. We have 
the following estimations: 
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3. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section we study the variation of the second order error β with respect to p1 and the length n of the 

bit stream.  

Figure 2 compares the different values of β obtained for the above tests in the following cases: a) n = 100, 
p1 in the range [0.3,0.7], M = 20 in the frequency test within a block and m = 2 in the serial test; b) n = 6724, 
p1 in the range [0.48,0.52], M = 100 in the frequency test within a block and m = 8 in the serial test; c) n ∈ 

[6724,9604] and p1 ∈ [0.48,0.52].  

Notice that for each case, the necessary condition in the runs test is verified: a) |Π − 0.5| ≤ 0.2 < 2 √𝑛⁄ , 

b) and c) |Π − 0.5| ≤ 0.02 < 2 √𝑛⁄ ≈ 0,204, so the test is applicable.  

Our analysis suggests that, in some local situations, some tests dominate others tests. Therefore, the second 
type error for the statistical tests suite, expressed by 

 

𝛽(𝑝1) =  max
𝑖=1,15̅̅ ̅̅̅ ̅

𝛽𝑖 (𝑝1) 

has a complicated form. 
 

 

a) n = 100. 
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b) n = 6724.                                                                       c) 6724 ≤ n ≤ 9604. 

Fig. 2 – Comparative view of β function in case of frequency, block frequency, runs, Fourier discrete and serial test. 

4. CONCLUSIONS 

In this paper we obtained estimations of the second error probability for five NIST tests and we showed 
that it is feasible to derive analytical formulas for computing the probability of accepting a false hypothesis. 

The next step in our future work will be to solve equations of the following form 

β(pi) = β(pj) 

and compare the theoretical results with the simulations suggested in [1]: associate with each test i, a 

Bernoulli random variable Ti (which will take the value 1 for the samples that pass the test i and 0 otherwise), 

estimate the value of pij = P(Ti ∩ Tj) − P(Ti) · P(Tj) and find the highest value pij for i, j = 1,15̅̅ ̅̅ ̅̅ . 

A full computation of the second error probability for all NIST tests is a pressing open problem that 

remains to be addressed. Some examples of applying statistical tests are in automated key and nonce values 
generation used in cryptographic protocols (nonce values are used to avoid the possibility of a replay attack 

as challenges in cryptographic protocols and shall not be repeated until authentication keys are changed). 
Practical examples are for Digital Identity Guidelines (see [8]). Automated key and nonce values generation 

is made usually by RBG (random bit generators implemented by hardware devices) or PRBG (implemented 
by software/firmware devices). 

5. APPENDIX 

In this appendix, very simple code fragments implementing the probability functions described in the 
section [2] are provided. 

% matlab script for Frequency test 

function [betap] = betaFreq(p1,n)  

p0=0.5; q0=0.5; q1=1-p1; alf=0.01;  

x1=sqrt(p0*q0./(p1.*q1)).*(norminv(1-alf/2,0,1)-n.*(p1-p0)./sqrt(n.*p0*q0));  
x2=sqrt(p0*q0./(p1.*q1)).*(norminv(alf/2,0,1)-n.*(p1-p0)./sqrt(n.*p0*q0));  
betap=cdf(’Normal’,x1,0,1)-cdf(’Normal’,x2,0,1);  

end 

 
% matlab script for Block Frequency test  
function [betap] = betaFreqBl(p1,n,m) 
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p0=0.5; q0=0.5; q1=1-p1; alf=0.01;  

glib=floor(n/m) 
x=(p0*q0*chi2inv(1-alf,glib)-m*n.*(p1-p0).*(2*p1-p1-p0))./(p1.*q1);  

betap=chi2cdf(x,glib);  

end 

 
% matlab script for Serial test  
function [betap] = betaSerial(p1,n,m) 

p0=0.5; alf=0.01;  
glib=2^m-1; 

v=p0^m./(p1.^m); 

x=v.*chi2inv(1-alf,glib)+n/m*(p0^m-p1.^m).^2./(p0^m)./(p1.^m);  
betap=chi2cdf(x,glib);  

end 

 
% plotting the output 

n=6724; p1=0.48:0.001:0.52; % 2Dplot       n=6724:10:9604;%3Dplot 
                                     p1=0.48:0.001:0.52; [p1,n]=meshgrid(p1,n); 

b1=betaFreq(p1,n);                                                                                                            mesh(p1,n,b1); hold on 
b2=betaFreqBl(p1,n,100);                                                                                                 mesh(p1,n,b2);  

b3=betaRuns(p1,n);                                                                                                            mesh(p1,n,b3);  
b4=betaFour(p1,n);                                                                                                            mesh(p1,n,b4);  
b5=betaSerial(p1,n,10);                                                                                                     mesh(p1,n,b5);  

plot(p1,b1,p1,b2,p1,b3,p1,b4,p1,b5); 
legend(’Freq’,’FreqBl’,’Runs’,’Fourier’,’Serial’); 
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