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1. INTRODUCTION 

Any secured information system must offer, among others, protection against unauthorized disclosure and 
malicious alterations of computing resources, whilst ensuring that legitimate agents can easily and safely 

access them. These three security properties are also known as privacy, integrity and respectively availability. 
Access control is the process of enforcing these properties and it requires that each access procedure of a 

system and its resources is preceded, directly or indirectly, by an access control decision which makes sure 
that only authorized operations take place. 

The direct precedence is strongly related to the reference monitor notion defined by Lampson in [1], on 
which many of the contemporary access control mechanisms are based. A reference monitor is a trusted party 

that intercepts all the operations meant to be performed on resources and allows only the ones considered 
legitimate in relation to the initiator of the respective operation and the underlying security policy. 

The security evaluation happens indirectly when mediation of every operation is not necessary and access 
control is a consequence of the mechanisms used to distribute the data. For example, in the setup phase, a 
trusted component of the system can encrypt all the resources and then share appropriate decryption keys to 

agents based on their privileges as defined by the desired security policy. We can then rely on the security of 
the employed cryptographic scheme and the correctness of the key distribution to ensure that agents can only 

access resources for which they have the required authorizations. More specifically, the agent’s access rights 
will be given by the keys in his possession with which he will be able to read and/or manipulate certain 

resources. Given that access operations imply cryptographic evaluations such as encryption and decryption, it 
is no longer required for each one to be intercepted and evaluated by a reference monitor. This approach is 
known in literature as cryptographic access control and it represents an important step towards a more 

distributed way of dealing with access control. 
Mandatory policies rely on rules defined and administered by a trusted party with which the participants 

have to strictly comply. Data protection focuses on its sensitivity and is achieved through a rigorous control of 
the flow of information which can be formally bounded. During the setup phase of a mandatory system, the 

trusted party assigns security clearances to agents and security labels to resources. The two are matched up 
against each other when access is requested and it is granted only if the initiating agent possesses the 

appropriate clearance required by the resource in question. This kind of policies lends itself well to 
environments where data leaks and corruptions are critical such as the military ones. 
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Besides relying on a trusted party for the definition of access rules, it is most often than not the case that 
mandatory policies also make use of a central authority for access control enforcement. The authority is active 

during normal operation of the system and intercepts all the access requests in order to allow only the legitimate 
ones. This means that the proper functioning of this mediating component is vital to the usability of the system, 
which makes it a potential single point of failure. Any malfunctions or performance bottlenecks at its level will 

severely incapacitate the protected system. Coupled with the fact that the data is usually stored in clear and is 
thus susceptible to theft in case the storage is compromised, it is clear that another approach is desirable. 

The main focus of this paper is to propose a solution for the enforcement of mandatory policies that uses 
cryptography as an additional layer of protection for data, as well as a means of avoiding continuous mediation 

of access operations. The type of cryptographic schemes that we are going to use is attribute-based encryption 
(ABE) because it fits very well with our needs as it allows for fine-grained control over encrypted data. In the 

key-policy approach, ciphertexts are associated with one or more attributes that describe the nature of the 
encrypted information and the private keys of the users include access structures that have to be satisfied by 
the set of attributes belonging to a ciphertext in order for decryption to be possible. Since mandatory policies 

are formally underlined by lattice structures that govern the information flow, we will show how we can use 
ABE to model and enforce these lattices in terms of read and write operations. 

We use the ABE scheme for monotonic access structures proposed by Goyal et al. in [2] to enforce general 
mandatory policies based on the information flow model defined by Denning in [4]. We also tackle the Biba 

[5] and Bell-LaPadula [6] policies which make use of richer lattice structures obtained from the Cartesian 
product between a set of security levels and a powerset of security categories to ensure data integrity and 

confidentiality, respectively. The same monotonic scheme is used for the Biba policy while for Bell-LaPadula 
the scheme for non-monotonic access trees proposed by Ostrovsky et al. in [3] is more appropriate because we 

need to be able to express negations. We will make use of a combination between the two ABE schemes in 
order for filtering out of public parameters to be possible as well. 

Security of both read and write operations will be proven, as well as collusion resistance. We will make 
use of the results obtained by the authors of the ABE schemes and also of the decisional Diffie-Hellman and 
Bilinear Diffie-Hellman assumptions. 

Finally, we will highlight the limitations concerning the enforcement of write operations at the category 

level in the case of the Bell-LaPadula policy. Forcing encryption with a set of attributes requires significant 
changes to either of the ABE schemes and we will leave it as an open problem. 

2. PRELIMINARIES 

We will first start by describing some introductory notions regarding mandatory policies and attribute-

based encryption which we will later use to define our solution for cryptographically enforcing mandatory 
policies. 

2.1. Mandatory access control policies  

A predictable and strictly controlled flow of information is crucial when it is required to ensure properties 

such as data confidentiality or integrity. For this reason, mandatory policies are usually designed alongside a 
lattice such that the information flow will mirror the structure of the lattice. These lattice-based access control 
policies assign security classes (clearances and labels) to objects and subjects. The flow of information will 

then be regulated according to this association. 
Dorothy Denning has formally defined the information-flow model in [4] as being the tuple FM = < N, P, 

SC, ⊕, →> where: 

• N = {a, b,...} is the set of objects in the system. It includes the active objects represented by the users. 

• P = {p, q,...} i s the set of processes running on behalf of the users. 

• SC = {A, B,...} is the finite set of security classes. Each object o ∈ N and each process p ∈ P are associated 

with a security class from SC. 
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• ⊕: SC × SC → SC is a binary operator for combining security classes that is commutative and 

associative. Its application to any two security classes A and B results in a security class which contains 

information obtained from both A and/or B. 

• → is defined over the elements of the Cartesian product SC × SC and represents the flow relation. A → 

B indicates that information from objects associated with the A security class can be transferred to objects 

whose security class is B. Flow policies are defined in terms of the → relation and any information flow 

model is considered secure if the execution of any chain of operations results in a flow which adheres to 

the policy’s definitions. 

Denning has also defined a set of axioms for which the tuple < SC, →, ⊕, ⊗ > forms a bounded lattice. 

Such a lattice comprises of a finite partially ordered set that has both a lower bound and an upper bound relative 

to the flow relation →.  

The principles are the following: 

1. < SC, →> is a partially ordered set, otherwise the flow relation → is inconsistent: 

• reflexivity: information is permitted to flow from an object to itself. 

• transitivity: transferring information from a class A to a class C through an intermediary class B is 

equivalent to transferring information from A directly to C. 

• anti-symmetry: if information can flow between two security classes A and B in both directions 

then the classes are redundant and thus the same. 

2. SC is a finite set. This is a reasonable requirement for any practically implemented system. 

3. The class combining operator ⊕ joins any two classes A, B ∈ SC into their least upper bound and is 

totally defined over SC. These two properties imply that ⊕ can be used to compute the upper bound of 

the entire lattice denoted H. 

4. The application of the ⊗ operator to any two classes A, B ∈ SC results in their greatest lower bound. It 

can be used to obtain the lower bound of the lattice denoted L, which is equivalent to the publicly 

available information in a system or the empty set ∅ if no such information is contained within the 

system in question. 

Richer and more expressive information flow policies can be obtained by combining two or more lattices 
using the Cartesian product.  

Any policy defined over the resulting lattice structure will permit the flow of information only if the 
corresponding flows are permitted in all of the individual lattices.  

In other words, the overall flow relation is described as a logical AND over the flow relations of the lattices 
that were part of the Cartesian product: → = →1 ∧ →2 ∧···∧ →n. 

The most common use of such combinations are mandatory policies defined over a set of security levels 

together with a set of security categories. The security classes defined by Denning are now formed from an 
authorization level and a subset of categories and the relation between them is usually called dominance. The 
information flow relation is defined as follows: 

A → B ⇐⇒ level(A) ≤ level(B) AND categories(A) ⊆ categories(B) 

Formally, the security levels correspond to a lattice over a totally ordered set, while the power 3 set of 

categories along with the include operator ⊆ form a lattice over a partially ordered set. 

The Biba [5] and Bell-LaPadula [6] policies make use of such Cartesian products in order to ensure data 
integrity and respectively confidentiality. 
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2.2. Attribute-based encryption 

This section reviews some of the formal definitions introduced and used by the authors of [2] and [3] to 
construct and prove the security of ABE schemes for both monotonic and non-monotonic access structures. 

2.2.1. Access structures 

Definition 2.1. If {P1, P2,..., Pn} is a set of participants, then an access structure is a collection                 A 
⊆ 2{P1, P2, ..., Pn} \ {∅} of non-empty subsets of {P1, P2, ..., Pn}. The access structure is considered monotone if: 

B ∈ A and B ⊆ C ⇒ C ∈ A, ∀ B, C. 

The sets in A are called the authorized sets of participants, while those not in A are the unauthorized sets 
of participants. 

In the context of ABE, the attributes will play the role of the participants and this means that A will 
encompass the authorized sets of attributes. 

2.2.2. Algorithms of attribute-based encryption schemes 

A key-policy attribute-based encryption scheme as designed by the authors of [2] is composed from the 
following four algorithms: 

• Setup: A non-deterministic algorithm that takes as input the security parameter and outputs the public 

parameters PK and the master key MK. 

• Encryption: A non-deterministic algorithm that, given a message m, a set of attributes γ and the public 

parameters PK, computes the ciphertext E of m. 

• Key generation: A non-deterministic algorithm that takes as input an access structure A, the master key 

MK and the public parameters PK and outputs a decryption key D that includes the access structure A. 

• Decryption: A deterministic algorithm that given as input a ciphertext E of a message m encrypted with 

the set of attributes γ, a decryption key D associated with an access control structure A and the public 

parameters PK, outputs m if γ ∈ A, otherwise an error is thrown. 

2.2.3. The selective-set model for ABE 

The security against chosen plaintext attacks of an attribute-based encryption scheme is proven using the 

selective-set model for ABE, comprised of the following steps: 

• Init: The adversary A declares a set of attributes γ upon which he will be challenged. 

• Setup: The challenger runs the Setup algorithm of ABE and transfers the public parameters PK to the 

adversary. 

• Phase 1: The adversary can issue requests for private keys for a set of access structures Ai, where γ ∉Ai, 

∀i. 

• Challenge : The adversary submits two messages m0 and m1 such that |m0| = |m1|. The challenger 

randomly chooses a bit b = {0, 1} and encrypts mb with γ. The resulting ciphertext is given to the 

adversary. 

• Phase 2: Phase 1 is repeated. 

• Guess : The adversary outputs a guess b0 of b. 
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The advantage of A in this game is given by the probability 𝑃𝑟[𝑏′ = 𝑏] −
1

2
. 

The selective-set model can also handle chosen ciphertext attacks if decryption queries are allowed in 

Phase 1 and Phase 2. 

Definition 2.2. An attribute-based encryption scheme is secure in the selective-set model of security if all 

polynomial-time adversaries have at most a negligible advantage in the selective-set game. 

2.2.4.  Bilinear maps 

If we consider 𝔾1 and 𝔾2 to be two multiplicative cyclic groups of prime order p, g a generator of 𝔾1 and 

e: 𝔾1 × 𝔾1 → 𝔾2 a bilinear map, then e exhibits the following characteristics: 

• Bilinearity:  and a, b ∈ Zp. 

• Non-degeneracy: e(g, g) ≠1. 

• Symmetry: e(ga, gb) = e(g, g)ab = e(gb, ga), ∀a, b ∈ Zp. 

𝔾1 is said to be a bilinear group if its corresponding group operation and the bilinear map e are both 

efficiently computable. 

2.2.5.  The decisional Bilinear Diffie-Helman (BDH) assumption 

If a, b, c, z are randomly extracted from ℤp and g is a generator of 𝔾1, then the decisional BDH assumption 

states that there exists no probabilistic polynomial-time algorithm ℬ that can distinguish the tuple (A = ga, B = 

gb, C = gc, e(g, g)abc) from the tuple (A = ga, B = gb, C = gc, e(g, g)z) with more than a negligible advantage. The 
advantage of ℬ is: 

| Pr[ℬ (A,B,C,e(g, g)abc) = 0] − Pr[ℬ (A,B,C,e(g, g)z) = 0] | 

where the probability is considered over the random choice of the generator g, the random choice of                       

a, b, c, z ∈ ℤp and the random bits consumed by ℬ. 

3. OUR SOLUTION 

The central authority that defines the rules of mandatory policies also intervenes in both the setup phase of 
the system by assigning security classes to users and objects and also during normal operation for access control 
mediation and enforcement, very much like a reference monitor. This latter fact is disadvantageous because it 

requires users and/or their associated subjects to authenticate themselves before each access operation. Also, 
more importantly, the availability of the central authority is critical for the proper functioning of the system, 

which inevitably makes it a potential performance bottleneck and single point of failure. Additionally, even 
though such systems usually have their storage components placed in a protected area, the data is persisted in 

clear and that means it is still susceptible to theft in case the containers are compromised. 
A more distributed approach to mandatory policies is therefore desirable so as to make possible access 

control enforcement without the continuous intervention of a reference monitor during the normal operation 
of the system. Having the data secured by an additional layer of protection such as encryption is also required. 
Both goals can be achieved by using attribute-based encryption: data can be encrypted and the private keys 

and the public encryption parameters can be generated and distributed in a manner that precisely enforces the 
lattice structures that underline these policies. As such, the central authority will only be used to initialize the 

system and to add users and resources. Access operations will no longer require mediation since access control 
will be a consequence of the employed encryption scheme, with subjects being able to access the storage 

containers directly. 
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The rest of the section describes how we can carry out this modeling, both for the general case of policies 
based on the information flow model as defined by Denning and, more specifically, for the Biba and Bell-

LaPadula policies where the Cartesian product between security levels and security categories is used to obtain 
richer lattice structures. 

3.1. Cryptographic enforcement of general mandatory policies  

Let the tuple FM = < S, O, SC, ⊕, →> be an information flow model and the tuple L = < SC, →, ⊕, ⊗ 

> a bounded lattice as defined by Denning, where O is the set of objects, S is the set of subjects acting on 

behalf of users, SC is the set of security classes, ⊕ is the class combining operator, ⊗ is the lower bound 
operator and → is the flow relation. We also consider c: S ∪ O → SC a function that returns the security class 

associated with a subject or an object. The bounds imposed on the flow of information by a general lattice-
based mandatory policy can then be defined in terms of read and write operations as follows: 

• read operations: a subject s ∈ S can read an object o ∈ O if c(o) → c(s). The lattice structure must allow 

for information to flow from the security class of o to the security class of s. 

• write operations: a subject s ∈ S can write into an object o ∈ O if c(s) → c(o). The lattice structure must 

allow for information to flow from the security class of s to the security class of o. 

The semantics of the flow relation → will be given by the protection goals the policy sets out to achieve 

such as confidentiality in the case of the Bell-LaPadula model or integrity in the case of the Biba model. The 
general policy can accommodate any kind of restrictions over the information flow. 

At a high level, general mandatory policies are cryptographically enforced through ABE by considering 
the security classes from SC as attributes. Each data object is encrypted with an attribute corresponding to its 

security class. Private keys are generated such that a user can decrypt an object only if information can flow 
from the security class of the object to the security class of the user. This is done by constructing each access 

tree to capture the security class of the corresponding user and the ones below it in the lattice structure. In other 
words, the tree will only be satisfied by security classes that flow into the class of the user, hence enforcing 
read access. 

As far as write operations are concerned, if enforcement no longer relies on mediation then a malicious 
user can always choose to bypass encryption or use other communication channels to send information to 

unauthorized parties. However, we will only focus on preventing users from generating valid encryptions that 
would violate the bounds placed on the information flow by a policy. Thus, they should be able to encrypt data 

only with security classes that are above theirs in the lattice structure so that the flow of information is permitted 
from their class to the destination class. 

We will use the ABE scheme for monotonic access structures defined by Goyal et. al in [2] for modeling  
general mandatory policies. Let SC = {sc1, sc2,..., scn} be a set of security classes and U = {1,2,...,n} a universe 

of attributes. We consider a one-to-one mapping between them such that i ∈ U is the attribute associated with 
the security class sci ∈ SC. We can now formally define two functions that given a security class construct an 

access tree and respectively generate encryption parameters for ABE for that class: 

• Access Tree Generation (sc, L, U): Given a bounded lattice L = < SC, →, ⊕, ⊗ >, a security class sc 

∈ SC and a universe of attributes U, the function constructs an access tree T that will be satisfied by any 

security class equal to or below sc in the lattice structure. T will be used by the Key Generation from 

the attribute-based encryption scheme to produce a key that allows a user to decrypt an object only if 

information can flow from the security class of the object to the security class of the user.  

T will have a leaf node for each attribute i ∈ U such that sci → sc, sci ∈ SC. The leaves are then connected 

to an OR gate, which serves as the root node. Since the private key of any user belonging to the security 
class sc will not be satisfied by classes above sc in the hierarchy, users can not perform decryption 

operations that would result in a violation of the flow relation →. 
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• Encryption Parameters Generation (sc, L, PK): Given a bounded lattice L = < SC, → , ⊕, ⊗ >, a 

security class sc ∈ SC and a set of public parameters generated by the Setup algorithm of the ABE 

scheme PK = {T1, T2, ..., Tn, Y }, the function filters out parameters such that encryption is only possible 

with attributes corresponding to security classes above sc in the lattice structure. The remaining 

parameters are randomized in order to prevent collusion and then given to a user associated with sc. He 

will be able to encrypt data with security classes to which information can flow from sc. 

If x is a value extracted uniformly at random from Zp, the returned parameters will be: 

EPsc = {Y x, {Ti
x | sc → sci, sci ∈ SC}} 

Note that raising the public parameters to the power of a random value x is precisely what happens 
during the Encryption algorithm of the monotonic attribute-based encryption scheme. This guarantees 

that the randomization process does not affect the correctness of the cryptosystem: the random s value 
will simply be replaced by x · s, nothing else changes. The users will be able to utilize the scheme in the 
same way as before. 

Since any user belonging to the class sc will not possess encryption parameters associated with the 
attributes for which the security classes are below sc in the hierarchy, he cannot encrypt with any 
attributes that would violate the flow relation →. 

Let L = < SC, →, ⊕, ⊗ > be a lattice where SC = {SC1, SC2, SC3, SC4} such that                               

SC1 → SC2 → SC3 → SC4, as illustrated on the right. 

Let U = {1, 2, 3, 4} be a universe of attributes such that i is the attribute associated with the security  
class SCi. Then the public key generated by the Setup algorithm of ABE is PK = {T1, T2, T3, T4, Y}. 

Encryption Parameters Generation (SC3, L, PK) returns the encryption parameters                  

𝐸𝑃𝑆𝐶3
= {𝑇3

𝑥 , 𝑇4
𝑥 ,𝑌𝑥 } where x is a random value from Zp. 

 

The tree generated by the Access Tree Generation (SC3, L, U) function is illustrated on the right. 

 

 

 

 

 

 

 

Fig. 1 – Example of access tree and encryption parameters generation for general mandatory policies. 

Figure 1 illustrates an example of how an access tree is generated and how the public parameters are filtered 

out. 
We will now describe how these two functions are used in a system that cryptographically enforces a 

general mandatory policy. During the setup phase, a trusted component associates each object and each user 
with a security class. The attribute-based cryptosystem is also initialized through the Setup algorithm using 
the security classes set as attributes. Data objects are then encrypted using ABE with the attributes that 

correspond to their security classes. For each user, his security class is used to generate an appropriate access 
tree with the Access Tree Generation function which will in turn be used to issue a private key for the 

attribute-based scheme. The security class is also used to filter out forbidden public parameters and randomize 
the remaining ones with the help of the Encryption Parameters Generation function. The private key and 

the remaining encryption parameters are then handed out to the user. At this point the initialization step is 
considered complete and users can perform read and write operations through decryption and encryption, 
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respectively, without the intervention of a reference monitor. The central authority will only perform actions 
when users and objects are added into the system. 

We will now discuss the security of the proposed solution. We will prove that if the read operations lead 
to a violation of the information flow bounds then a simulator can be constructed that has a non-negligible 

advantage in the selective-set model security game for attribute-based encryption which, as proven in [2], 
ultimately leads to a contradiction of the decisional BDH assumption. We also show that if write operations 
that do not follow the policy can occur, we can build a simulator that can play the simple decisional Diffie-

Hellman (DDH) game with a non-negligible advantage, which would contradict the DDH assumption. 

Security of read operations . Failure to properly enforce read activities implies that a subject s ∈ S 
associated with a security class c(s) can decrypt an object o ∈ O associated with a security class c(o) in spite 

of the fact that c(o) → c(s) does not hold in the lattice L. In ABE terms, this means that decryption is possible 

even if the attribute with which the ciphertext is encrypted (c(o)) does not satisfy the access tree T generated 
by calling the Access Tree Generation function with the c(s) security class, tree based on which the private 
key was generated. 

Let A be an adversary that can perform such decryptions with a non-negligible probability. We show how 
we can build a simulator S that uses A to attack the ABE scheme in the selective-set model with non-negligible 

advantage. 

• Init: The challenger C generates the groups G1 and G2 with an efficient bilinear map e: G1 × G1 → G2, 

a generator g and the universe of attributes U. The simulator S sets a bounded lattice L = < SC, →, ⊕, 

⊗ > such that each i ∈ U is the attribute associated with the security class sci ∈ SC. 

S then declares γ = {x}, x ∈ U the set of attributes it wants to be challenged upon such that ∃ sci ∈ SC 

with scx ≠ sci for which scx → sci does not hold. In other words, γ contains an attribute corresponding to 

a security for which there exists at least one other class below it in the lattice structure. If we assume 
that the set of security class SC is not trivial and contains more than one element then at least such one 

element is guaranteed to exist because of the anti-symmetry property of the partial order relation →. An 
example of a security class that satisfies this property is the upper bound of the lattice obtained using 
the class combining operator: SC1 ⊕ ··· ⊕ SCn 

• Setup: The challenger initializes the ABE cryptosystem to obtain the master key MK = {t1, t2,..., tn, y} 

and the public key PK = {T1 = gt1, T2 = gt2, ..., Tn = gtn, Y = e(g, g)y}. The simulator receives PK, which in 

turn gives it to the adversary, together with the set γ and the security class scx. 

• Phase 1: S issues queries to the challenger for private keys associated with access trees generated by 

calls to the function Access Tree Generation with security classes sci ∈ SC such that scx↛sci. The 

fashion in which the attribute x was chosen in the Init step assures us that SC contains at least one such 

class. The selection criteria for sci and the definition of the Access Tree Generation function lead to the 

conclusion that γ will not satisfy any of the generated trees. 

All the user keys that the simulator receives will be given to A. 

• Challenge : The simulator S generates two challenge messages m0 and m1 and sends them to C. The 

challenger extracts uniformly at random a bit b ∈ {0, 1} and encrypts mb with γ. The resulting ciphertext 

E is given to S which then sends it to the adversary A. 

• Phase 2: Phase 1 is repeated. 

• Guess : A will try to decrypt the ciphertext E despite the fact the access trees associated with the keys he 

obtained during Phase 1 and Phase 2 are not satisfied by the set of attributes γ. If decryption is 

successful, the adversary will transfer the obtained message m to S which compares it to m0 and m1 and 

gives the challenger a guess b0 of b such that mb0 = m. In case the adversary fails to decrypt E he sends ⊥ 
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to S. The simulator then extracts the guess b0 uniformly at random from {0, 1} and gives it to the 

challenger. 

A has, by definition, the probability to decrypt E. If decryption is successful then the simulator can tell 
for sure which challenge message was encrypted. Thus, the probability of guessing b in this case is equal 

to 𝜖. On the other hand, if decryption is unsuccessful then the probability of guessing 𝑏 is 
1

2
 since the 

simulator extracts the guess b0 uniformly at random from {0, 1}. 

The overall probability for S to guess 𝑏 is [𝑏′ = 𝑏] = 𝜖 +
1

2
 . The selective-set model for attribute-based 

encryption specifies that the advantages of the simulator S is 𝑃𝑟[𝑏′ = 𝑏] −
1

2
= 𝜖 +

1

2
−

1

2
= 𝜖. 

Goyal et al. have proven that S can be used to build another simulator that plays the decisional BDH 

game with advantage . The fact that is non-negligible leads to a contradiction of the decisional BDH 
assumption. 

Security of write operations . Erroneous enforcement of write activities means that a subject s ∈ S 
associated with a security class c(s) can encrypt data with an attribute k corresponding to a security class sck in 

spite of the fact that c(s) → sck does not hold in the lattice L. Considering the definition of the Encryption 

Parameters Generation, this scenario is equivalent to saying that a user can create a valid encryption in the 

ABE scheme with an attribute for which he does not possess the corresponding encryption parameter. This 
means that the user can somehow determine Tk

x = gx·tk despite the fact that Tk
x ∉ EPc(s) = {Y x = e(g, g)x·y, {Ti

x = 

gx·ti | c(s) → sci, sci ∈ SC}}. 

Since the value of the generator g is publicly known, the user is left to find out the value x · tk. We will 

focus on the probability of computing tk. Note that the values x, y and ti, ∀i ∈ U are chosen uniformly at random 

from Zp and are thus independent of one another. This means that the user gains no information whatsoever 
about tk from the encryption parameters already in his possession. In this case, the only way tk can be determined 
is by randomly guessing it from the entire domain Zp. This is made infeasible by choosing an appropriate 

security parameter κ so that p is sufficiently large and thus ensure security. Should the probability to guess tk 

still be non-negligible then the other elements of the private key MK from the ABE scheme can also be 

determined since they are no different from tk from a statistical point of view. This would allow the user to 
generate private keys that can decrypt any kind of ciphertext, irrespective of the attributes they are encrypted 

with. We have already seen that such decryptions lead to a contradiction of the decisional BDH assumption.  

There is, however, a scenario in which the user/subject can own a value that is dependent on tk. This 
happens when sck → c(s) because, based on the construction of the Access Tree Generation function, the 

attribute k will be part of the user’s private key. Thus, the user will possess the value  where x is 
the leaf node associated with k : k = att(x). qx is the polynomial computed for the leaf node by the Key 

Generation algorithm from the ABE scheme. Taking into account that the points of the polynomial and y are 

chose uniformly at random from Zp we conclude that the value qx(0) is also random. We now prove that if there 

exists an adversary A that can determine tk with non-negligible probability if it possesses  , then a 
simulator can be constructed that uses A to play the decisional Diffie-Hellman game with a non-negligible 

advantage. 
The decisional Diffie-Hellman (DDH) assumption states that, given a multiplicative cyclic group G of 

order p and g a generator for G, there exists no probabilistic polynomial-time algorithm that can distinguish 
the tuple (A = ga, B = gb, gab) from the tuple (A = ga, B = gb, gc) with more than a negligible advantage, where 
a,b and c are chosen randomly and independently from Zp.  

Let S be a simulator that uses A to play the DDH game as follows: 

• The challenger C determines the group G of prime order p and with generator g. It then extracts 

uniformly at random from Zp the values a, b and c. A bit u ∈ {0, 1} is also randomly chosen. If u = 0, C 
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sets the tuple (A = ga, B = gb, Z = gab), otherwise it sets (A = ga, B = gb, Z = gc). The tuple (A, B, Z) is 

then given to the simulator S. 

• S gives A from the tuple to the adversary A. 

• A = ga can be seen as . We know that A has, by definition, the probability of determining the 

denominator in such a scenario. It gives the simulator S the value  if the computation was successful or 

⊥ to indicate that it failed. 

• If the simulator receives  from A it then computes  and compares the result to B. If B′ = B it 

sends to the challenger C a guess u′ = 0 of u and u′ = 1 otherwise. If it instead receives ⊥ from the 

adversary, S extracts u′ uniformly at random from {0, 1} and gives it to C. 

When Z = gab, if the adversary determined  then 𝐵′ =  𝑍
1

𝑎 =  𝑔𝑎𝑏
1

𝑎 =  𝑔𝑏 = 𝐵. This means that in this 
case, the probability for the simulator to guess u is the probability of A to determine the denominator. 

If the simulator receives ⊥ from the adversary, then the probability to guess 𝑢 is 
1

2
 due to the random 

choice of u′. 

The overall probability of S to guess 𝑢 is 𝑃𝑟[𝑢′ = 𝑢] = 𝜖 +
1

2
 which results in the advantage of the 

simulator in the DDH game to be: 𝑃𝑟[𝑢′ = 𝑢] −
1

2
= 𝜖 +

1

2
−

1

2
= 𝜖. 

Thus, the existence of such an adversary A contradicts the decisional Diffie-Hellman assumption. 

It is also desirable that read and write operations are secure against collusions. If two or more users come 
together with their respective private keys and encryption parameters, they should not be able to decrypt 
messages or encrypt with attributes for which it would be impossible for them to do so on their own. Read 

operations rely on the fact that the private keys of the attribute-based encryption scheme are collusion resistant 
themselves. 

As far as write operations are concerned, it should not be possible for encryption parameters belonging to 
different users to be used together to create valid encryptions, unless the parameters are associated with the 

same attributes. This is ensured by the randomization step of the Encryption Parameters Generation 

function. The encryption parameters will be different from user to user and combinations between them will 

make the interpolation at the exponent during decryption impossible. Note that such parameters can be 
combined if they are associated with the same attribute but this is not an issue since it implies that the colluding 
users can already encrypt with the attribute in question, meaning that no advantage is gained. 

Formally, we consider two users u1 and u2 with their respective encryption parameters EP1 = {Y x1, {Ti
x1 | 

c(u1) → sci, sci ∈ SC}} and EP2 = {Y x2, {Tj
x2 | c(u2) → scj, scj ∈ SC}}. 

Collusion between them implies that they can compute the triple (Yz, Ti
z, Tj

z) where i≠j, Tj
x1 ∉

 and thus they can encrypt with both attributes i and j despite them not being able to 

do so on their own. 

We consider the case when u1 and u2 have one encryption parameter each for different attributes. We prove 

that if there exists an adversary A that has a non-negligible probability to use the tuple 

(𝑌𝑥1   =  𝑒(𝑔, 𝑔) 𝑥1·𝑦 , 𝑇𝑖
𝑥1

 =  𝑔𝑥1·𝑡𝑖 , 𝑌𝑥2   =  𝑒(𝑔, 𝑔)𝑥2·𝑦 , 𝑇𝑗
𝑥2

 =  𝑔𝑥2·𝑡𝑗 ) 

to obtain (Y z = e(g, g)z·y, Ti
z = gz·ti, Tj

z = gz·tj) where x1, x2, ti, tj are extracted uniformly at random from Zp, i ≠ j 

and z ∈ Zp then we can construct a simulator S that uses A to play the decisional BDH game with non-negligible 

advantage. The steps are the following: 

• The challenger C generates the groups G1 and G2 with an efficient bilinear map e: G1×G1 → G2 and a 

generator g for G1. It then extracts uniformly at random from Zp the values a,b,c and k . A bit u ∈ {0, 1} 
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is also randomly chosen. If u = 0, C sets the tuple (A = ga, B = gb, C = gc, Z = e(g, g)abc), otherwise it sets 

(A = ga, B = gb, C = gc, Z = e(g, g)k). The tuple (A, B, C, Z) is then given to the simulator S. 

• S sets the values (Z, Ati, e(Btj, C), Btj) = (Z, ga·ti, e(g,g)tj·bc, gtj·b) where ti and tj are randomly chosen from 

Zp. The tuple is then sent to the adversary A. 

• The adversary tries to use the tuple (Z, ga·ti, e(g, g)tj·bc, gtj·b) to compute the values                          (e(g, 

g)z·bc, gz·ti, gz·b). Note that the probability to do so is only if Z = e(g, g)abc, as per the definition of A. It 

then sends the attempt (A′, B′, C′) to S. 

• The simulator performs two checks to confirm whether the adversary’s attempt was successful or not: 

– Compute e(C′, C) and compare the result to A′. 

– Compute e(B′, B) and compare the result to e(g, C′ti). 

If both hold then the simulator sets u′ = 0 and gives it to the challenger as a guess of u. Otherwise, the 

challenger receives u′ = 1. This is because the above comparisons return true only if the challenger successfully 

computes the values (A′ = e(g, g)z·bc,B′ = gz·ti,C′= gz·b) which means that Z = e(g,g)abc: 

e(C′, C) = e(gz·b, gc) = e(g, g)z·bc = A′ 

and 

𝑒(𝐵′ , 𝐵) =  𝑒(𝑔𝑧·𝑡𝑖 ,𝑔𝑏 ) =  𝑒(𝑔, 𝑔)𝑧·𝑡𝑖·𝑏
 

 𝑒(𝑔, 𝐶
′
𝑡𝑖

)  =  𝑒(𝑔, (𝑔𝑧·𝑏) 𝑡𝑖 ) =  𝑒(𝑔, 𝑔𝑧 ·𝑏·𝑡𝑖  ) =  𝑒(𝑔,𝑔)
𝑧·𝑡𝑖·𝑏

 

When the challenger sets u = 0 the adversary has, by definition, the probability 𝜖 of successfully computing 

the required values. This means that the probability for S to guess u is either 𝜖 if A’s attempt is successful or  

otherwise. That means that the probability to guess u when it is 0 is:                              

𝑃𝑟[𝑢′ = 𝑢|𝑢 = 0] = 𝜖 +
1

2
. 

When u = 1 the adversary does not gain any information to compute the tuple since Z = e(g, g)k. This means 

that the probability for the simulator to guess u is: 𝑃𝑟[𝑢′ = 𝑢|𝑢 = 1] =
1

2
. 

The overall advantage of the simulator S in the decisional BDH game is thus: 

 

We conclude that if the probability of the adversary is non-negligible then the advantage of the simulator 
S in the decisional BDH game is also non-negligible which contradicts the BDH assumption. 

3.2. Cryptographic enforcement of the Bell-LaPadula and Biba policies  

The Biba and Bell-LaPadula policies combine security levels with security categories in order to enforce 

data integrity and confidentiality, respectively. The underlying lattice structures L = (SC, ≥) are the result of 
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the Cartesian product between a total order over the set of security levels (L, ≤) and a partial order over the 
power set of the set of categories (P(C), ⊆) where SC = L × P(C) and the dominance relation ≥ is defined as 
follows: 

sc1 = (l1, C1) ≥ sc2 = (l2, C2) ⇐⇒ l2 ≤ l1 ∧ C2 ⊆ C1 

∀sc1, sc2 ∈ SC, ∀l1, l2 ∈ L, ∀C1, C2 ∈ P(C) 

Whilst both models can be cryptographically enforced using the general technique described in the previous 
section that maps security classes to attributes, we would lose the granularity offered by the fact that a security 
class is composed from a security level and a subset of categories. Moreover, if we consider |L| = n and |C| = 

m then |SC| = n · 2m. This implies a huge number of attributes and also large sizes for the ABE user keys. We 
therefore want to map the security levels and the security categories directly to attributes. This not only 

considerably decreases the size of the universe of attributes (n+m), but it also allows us to construct richer and 
more expressive access trees while at the same time exploiting the possibility of encrypting data with several 

attributes: a security level and multiple categories. 
Let L = {l1, ..., ln} be a set of security levels, C = {c1, ..., cm} a set of security categories and the universe 

of attributes U = {1, ..., n, n + 1, ..., n + m}. The one to one mapping from security levels and categories to 
attributes is done by the bijective function a: L∪C → U. We can now update the Access Tree Generation and 

Encryption Parameters Generation functions to support security levels and security categories in order to 
enforce read and write operations according to the security rules of either Biba or Bell-LaPadula policies. 

3.2.1. Modeling the Biba policy 

In the Biba model, security classes are replaced by integrity classes: L = (IC, ≥) where IC = L × P(C). If 
we consider β : S ∪ O → IC a function that returns the integrity class of a subject or an object and the sets of 

subjects and objects S and respectively O, the information flow regulated by the two properties: 

• Simple-integrity property: A subject s ∈ S can read data from an object o ∈ O only if β(o) ≥ β(s). 

• Integrity *-property: A subject s ∈ S can write data to an object o ∈ O only if β(s) ≥ β(o). 

Using the same ABE scheme for monotonic access structures, the two functions can be defined as follows: 

• Access Tree Generation (ic, L, U): Given a bounded combined lattice L, a universe of attributes U 

and an integrity class ic = (l, Cic) ∈ IC, the function constructs an access tree T that will be satisfied by 

any integrity class for which its security level dominates l and its subset of categories includes Cic. T 

will be used by the Key Generation from the attribute-based encryption scheme to produce a key that 

allows a user to decrypt an object only if information can flow from the integrity class of the object to 

the integrity class of the user (β(o) ≥ β(s)). 

The following steps are required to build T: 

– Let TL be the subtree of T that covers the security levels. TL has a leaf node for each attribute a(li) 

such that l ≤ li,∀li ∈ L. The leaves are then connected to an OR gate, which serves as the root node 

of TL.  

– Let TC be the subtree of T that covers the security categories. TC has a leaf node for each attribute 

a(cj) associated with a category cj ∈ Cic. The leaves are then connected to an AND gate, which 

serves as the root node of TC. 

– The subtrees TL and TC are both connected to an AND gate, which serves as the root node of T. 

Because the simple-integrity property requires the integrity class of the object to dominate that of the 

subject in order for read access to be permitted, the private key obtained from T will allow for decryption 
of messages encrypted with a security level above or equal to l and at least all the categories found in 

Cic (to model the inclusion relation). 
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• Encryption Parameters Generation (ic, L, PK): Given a bounded lattice L, an integrity class ic = (l, 

Cic) ∈ IC and a set of public parameters generated by the Setup algorithm of the ABE scheme PK = {T1, 

..., Tn, Tn+1, ..., Tn+m, Y}, the function filters out parameters such that encryption is only possible with 

attributes corresponding to security levels below l and categories found in the set Cic. This is because 

integrity *-property requires the integrity class of the subject to dominate that of the object in order for 

write operations to be allowed. The remaining parameters are randomized in order to prevent collusion 

and then given to a user associated with ic. 

       If x is a value extracted uniformly at random from Zp, the returned parameters will be: 

 

We have already seen that raising the public parameters to the power of a random value x does not affect 
the attribute-based encryption scheme in any way. 

Since any user belonging to the class ic will not possess encryption parameters associated with the 
attributes for which the security levels are above l and the categories are not included in Cic, he cannot 

encrypt with any attributes that would violate the integrity *-property. 

Figure 3 illustrates an example of how an access tree is generated and how the public parameters are filtered 
out in the case of the Biba model. 

As far as security and resistance to collusion are concerned, the discussions and proofs from the 
enforcement technique for general mandatory policies also apply here. 

3.2.2. Modeling the Bell-LaPadula policy 

The policy sets out to ensure data confidentiality and is defined over a set of subjects S and a set of objects 
O. If we consider α : S ∪ O → SC a function that returns the security class assigned to a subject or an object, 

the flow of information in the Bell-LaPadula mandatory policy is governed by the two following rules: 

• Simple-security property: A subject s ∈ S is allowed to read the information contained in an object 

o ∈ O if α(s) ≥ α(o). 

• *-property: A subject s ∈ S is allowed to write data into an object o ∈ O if α(o) ≥ α(s). 

Before describing the Access Tree Generation and Encryption Parameters Generation functions, we 
note that the access trees for a security class sc = (l,Csc) should not be satisfied if the ciphertext is encrypted 

with an attribute corresponding to a category that is not found in Csc. This means that in order to avoid 
duplication of attributes (to include the negations of each attribute) and ciphertexts of large sizes (messages 

have to be encrypted with attributes corresponding to the negation of the missing attributes), the non-monotonic 
ABE scheme [3] is more appropriate. However, it needs to be slightly modified to support filtering of 
encryption parameters. The alterations to the algorithms are the following: 

• Setup(d): The encryption parameters corresponding to attributes are given by the functions T,V : Zp 

→ G2. This means that encryption is possible with any attribute 𝑥 ∈ ℤ𝑝
∗ . This approach does not lend 

itself well to preventing a user to create ciphertexts with particular attributes. For this reason we will 

consider a predefined universe of attributes U = {1,..., n} with n ≥ d and replace the function T (and the 

underlying polynomial h(x)) with the set of elements {Ti = gti}i∈U, where ti are random elements from Zp. 

The other elements are chosen in the same manner as in the initial solution. The public key then becomes: 

PK = {g, g1 = gα,g2 = gβ = gq(0), gq(1), ..., gq(d) ,T1, T2, ..., Tn} 

The master key is MK = {α, t1, t2,..., tn}. 

• Encryption (m, γ, PK): The encryption of a message m ∈ G2 with a set of d attributes γ ⊆ U is: 
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where s ∈ Zp is chosen uniformly at random. 

• Key Generation (𝐴, MK, PK): Only the components of the private key corresponding to positive 

attributes are changed. As such, for each unprimed attribute xi ∈ P we have: 

 

The rest of the private key is computed as in the scheme proposed by Ostrovsky et al.  

• Decryption (E, D): The decryption process also changes only in relation to unprimed attributes. For 

each positive attribute 𝑥𝑖̌∈ γ′ (xi ∈ γ) the following element is evaluated: 

 

The Zi elements corresponding to negative attributes are computed as in the scheme for non-monotonic 
access structures [3], as well as the reconstruction of the encrypted message. 

We can now define the two functions used to cryptographically enforce Bell-LaPadula policies: 
• Access Tree Generation (sc, L, U): Given a bounded combined lattice L, a universe of attributes U 

and a security class sc = (l, Csc) ∈ SC, the function constructs an access tree T that will be satisfied by 

any security class for which its security level is dominated by l and its subset of categories is included 

in Csc. T will be used by the Key Generation from the attribute-based encryption scheme to produce a 

key that allows a user to decrypt an object only if information can flow from the security class of the 

object to the security class of the user (α(s) ≥ α(o)). 

The following steps are required to build T: 

– Let TL be the subtree of T that covers the security levels. TL has a leaf node for each attribute 

a(li) such that li ≤ l,∀li ∈ L. The leaves are then connected to an OR gate, which serves as the root 

node of TL. 

– Let TC be the subtree of T that covers the security categories. TC has a negated leaf node for 

each attribute a(cj) associated with a category that is not found in Csc: cj ∈ C \Csc. The leaves are 

then connected to an AND gate, which serves as the root node of TC. 

– The subtrees TL and TC are both connected to an AND gate, which serves as the root node of T 

. 

Because the simple-security property requires the security class of the subject to dominate that of the 

object in order for read access to be permitted, the private key obtained from T will allow for decryption 
of messages encrypted with a security level lower or equal to l. As far as categories are concerned, 
decryption of messages encrypted with at least one category that is not found in Csc will be denied. This 

is because the subset of categories belonging to the subject needs to include the subset of the object.  
• Encryption Parameters Generation (sc, L, PK): Given a bounded lattice L, a security class sc = (l, 

Csc) ∈ SC and a set of public parameters generated by the Setup algorithm of the ABE scheme for non-

monotonic access structures PK = {g, g1 = gα, g2 = gβ = gq(0), gq(1),...,gq(d), T1, T2,..., Tn, Tn+1,..., Tn+m}, the 

function filters out parameters such that encryption is only possible with attributes corresponding to 

security levels above l. As far as categories are concerned, no parameters are filtered out because the 

requirement is not to prevent encryption with a certain category but to ensure that each ciphertext is 

associated with at least all the categories from Csc. This is because the *-property requires the security 

class of the object to dominate that of the subject in order for write operations to be allowed. The 

remaining parameters are randomized in order to prevent collusion and then given to a user associated 

with sc. 



15  Cryptographic access control for mandatory security policies using attribute-based encryption  427 

If x is a value extracted uniformly at random from Zp, the returned parameters will be: 

The randomization process follows the principles of the encryption algorithm, the random element s is 
simply replaced by x·s, everything else stays the same. This change is transparent for the encryption and 
decryption agents. 

Since any user belonging to the class sc will not possess encryption parameters associated with the 
attributes for which the security levels are below l, he cannot encrypt with any attributes that would violate the 

*-property relative to the security levels. However, the user should be allowed to encrypt with any attribute 
corresponding to a category as long as the ciphertexts include the categories from 𝐶𝑠𝑐. This requires forcing 

the user to encrypt with a set of attributes which is not supported by neither ABE scheme described in [2] nor 
[3] without significant alterations. An idea would be to share a secret value between the encryption parameters 

corresponding to the attributes of the categories in 𝐶𝑠𝑐 such that share recovery and decryption is only possible 

if the encryption parameters in question are used. We leave further discussions regarding this matter as an open 
problem. 

Figure 4 illustrates an example of how an access tree is generated and how the public parameters are filtered 
out and randomized in the case of the Bell-LaPadula model. 

The proofs regarding security and collusion resistance follow a similar reasoning as the ones from the 
enforcement techniques of general mandatory policies. The randomization process is the same and the used 

ABE scheme is a mix between the two presented in [2] and [3] and both have been proven secure in the 
selective-set model. 

Let L = (IC, ≥) be a lattice underlying a Biba policy where IC = L × P(C), L = {L1, L2, L3, L4} such that L1 

≤ L2 ≤ L3 ≤ L4 and C = {x, y, z}. The two lattice structures are illustrated below (Fig. 2). 

Let U = {a(L1), a(L2), a(L3), a(L4), a(x), a(y), a(z)} be a universe of attributes associated where a : L ∪ C 
→ U is a function that maps an attribute to each security level and category. Then the public key generated by 

the Setup algorithm of ABE is PK = {Ta(L1), Ta(L2), Ta(L3), Ta(L4), Ta(x), Ta(y), Ta(z), Y }. 

 

Fig. 2 – Lattice structure used in the ABE scheme. 

Encryption Parameters Generation (ic = (L3, {x, y}), L, PK) returns the encryption parameters 

 

where k is a random value from Zp. 

The tree generated by the Access Tree Generation (ic = (L3, {x, y}), L, U) function is illustrated below. 

 

Fig. 3 – Example of access tree and encryption parameters generation for the Biba policy. 
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Let L = (SC, ≥) be a lattice underlying a Bell-LaPadula policy where SC = L × P(C), L = {L1, L2, L3, L4} 
such that L1 ≤ L2 ≤ L3 ≤ L4 and C = {x, y, z}. 

The two lattice structures are illustrated in Fig. 2. 
Let U = {a(L1), a(L2), a(L3), a(L4), a(x), a(y), a(z)} be a universe of attributes associated where                            

a : L ∪ C → U is a function that maps an attribute to each security level and category. Then the public key 

generated by the Setup algorithm of ABE is 

PK = {g, g1, g2, g
q(0), gq(1), ..., gq(d), Ta(L1), Ta(L2), Ta(L3), Ta(L4), Ta(x), Ta(y), Ta(z)} 

Encryption Parameters Generation (sc = (L3, {x}), L, PK) returns the encryption parameters 

 where k is a random 
value from Zp. 

The tree generated by the Access Tree Generation (sc = (L3, {x}), L, U) function is illustrated below. 
 

 

Fig. 4 – Example of access tree and encryption parameters generation for the Bell-LaPadula policy. 

4. CONCLUSIONS 

This paper proposes a solution for enforcing mandatory access control policies through cryptography. The 

motivation is that the central authority used to mediate each access request in the traditional approach inevitably 
represents a single point of failure. Any functional or performance issues at its level can badly hamper the 

normal use of the system. Added to that is the fact that it is desirable for data not to be stored in clear but to 
have it secured by a layer of protection. This is in order to mitigate any risks of theft in case the storage is 

compromised. 
We have started by introducing the reader to some of the formal concepts regarding mandatory policies 

and attribute-based encryption.  
We have then shown how we can model the lattice structures that underline mandatory policies in order to 

cryptographically enforce them through attribute-based encryption. Read operations are enforced by generating 
access trees that capture the lattice structure for a given security class, while write operations rely on 

randomization and careful distribution of the public parameters. We have used the monotonic ABE scheme [2] 
to enforce general mandatory policies based on the information flow model defined by Denning and the Biba 
policy concerned with data integrity.  

We also tackle the secrecy-based Bell-LaPadula policy which requires the use of a combination between 
the monotonic and non-monotonic [3] ABE schemes. This is in order to be able to express negations as well 

as to filter out public parameters. 

Security of both read and write operations is proven, as well as collusion resistance. We made use of the 
results obtained by the authors of the ABE schemes and also of the decisional Diffie-Hellman and Bilinear 
Diffie-Hellman assumptions. 

Finally, we have highlighted the limitations concerning the enforcement of write operations at the category 
level in the case of the Bell-LaPadula policy. Forcing encryption with a set of attributes requires significant 

changes to either of the ABE schemes and we leave it as an open problem. 
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