
 THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,
 OF THE ROMANIAN ACADEMY Volume 18, Special Issue 2017, pp. 413-430

CRYPTOGRAPHIC ACCESS CONTROL FOR MANDATORY SECURITY POLICIES

USING ATTRIBUTE-BASED ENCRYPTION

Daniel PLECAN

“Alexandru Ioan Cuza” University of Iasi, Department of Computer Science, Romania

E-mail: daniel.plecan@gmail.com

Abstract. This paper proposes a solution for enforcing mandatory access control policies through

cryptography as an alternative to the continuous mediation of access operations by a reference monitor.

Attribute-based encryption is used to model the lattice structures underlying this type of policies
through techniques of constructing and distributing access trees and public key parameters.

Key words: Cryptographic access control, attribute-based encryption, mandatory policies, access trees,

lattice structures.

1. INTRODUCTION

Any secured information system must offer, among others, protection against unauthorized disclosure and
malicious alterations of computing resources, whilst ensuring that legitimate agents can easily and safely

access them. These three security properties are also known as privacy, integrity and respectively availability.
Access control is the process of enforcing these properties and it requires that each access procedure of a

system and its resources is preceded, directly or indirectly, by an access control decision which makes sure
that only authorized operations take place.

The direct precedence is strongly related to the reference monitor notion defined by Lampson in [1], on
which many of the contemporary access control mechanisms are based. A reference monitor is a trusted party

that intercepts all the operations meant to be performed on resources and allows only the ones considered
legitimate in relation to the initiator of the respective operation and the underlying security policy.

The security evaluation happens indirectly when mediation of every operation is not necessary and access
control is a consequence of the mechanisms used to distribute the data. For example, in the setup phase, a
trusted component of the system can encrypt all the resources and then share appropriate decryption keys to

agents based on their privileges as defined by the desired security policy. We can then rely on the security of
the employed cryptographic scheme and the correctness of the key distribution to ensure that agents can only

access resources for which they have the required authorizations. More specifically, the agent’s access rights
will be given by the keys in his possession with which he will be able to read and/or manipulate certain

resources. Given that access operations imply cryptographic evaluations such as encryption and decryption, it
is no longer required for each one to be intercepted and evaluated by a reference monitor. This approach is
known in literature as cryptographic access control and it represents an important step towards a more

distributed way of dealing with access control.
Mandatory policies rely on rules defined and administered by a trusted party with which the participants

have to strictly comply. Data protection focuses on its sensitivity and is achieved through a rigorous control of
the flow of information which can be formally bounded. During the setup phase of a mandatory system, the

trusted party assigns security clearances to agents and security labels to resources. The two are matched up
against each other when access is requested and it is granted only if the initiating agent possesses the

appropriate clearance required by the resource in question. This kind of policies lends itself well to
environments where data leaks and corruptions are critical such as the military ones.

414 Daniel Plecan 2

Besides relying on a trusted party for the definition of access rules, it is most often than not the case that
mandatory policies also make use of a central authority for access control enforcement. The authority is active

during normal operation of the system and intercepts all the access requests in order to allow only the legitimate
ones. This means that the proper functioning of this mediating component is vital to the usability of the system,
which makes it a potential single point of failure. Any malfunctions or performance bottlenecks at its level will

severely incapacitate the protected system. Coupled with the fact that the data is usually stored in clear and is
thus susceptible to theft in case the storage is compromised, it is clear that another approach is desirable.

The main focus of this paper is to propose a solution for the enforcement of mandatory policies that uses
cryptography as an additional layer of protection for data, as well as a means of avoiding continuous mediation

of access operations. The type of cryptographic schemes that we are going to use is attribute-based encryption
(ABE) because it fits very well with our needs as it allows for fine-grained control over encrypted data. In the

key-policy approach, ciphertexts are associated with one or more attributes that describe the nature of the
encrypted information and the private keys of the users include access structures that have to be satisfied by
the set of attributes belonging to a ciphertext in order for decryption to be possible. Since mandatory policies

are formally underlined by lattice structures that govern the information flow, we will show how we can use
ABE to model and enforce these lattices in terms of read and write operations.

We use the ABE scheme for monotonic access structures proposed by Goyal et al. in [2] to enforce general
mandatory policies based on the information flow model defined by Denning in [4]. We also tackle the Biba

[5] and Bell-LaPadula [6] policies which make use of richer lattice structures obtained from the Cartesian
product between a set of security levels and a powerset of security categories to ensure data integrity and

confidentiality, respectively. The same monotonic scheme is used for the Biba policy while for Bell-LaPadula
the scheme for non-monotonic access trees proposed by Ostrovsky et al. in [3] is more appropriate because we

need to be able to express negations. We will make use of a combination between the two ABE schemes in
order for filtering out of public parameters to be possible as well.

Security of both read and write operations will be proven, as well as collusion resistance. We will make
use of the results obtained by the authors of the ABE schemes and also of the decisional Diffie-Hellman and
Bilinear Diffie-Hellman assumptions.

Finally, we will highlight the limitations concerning the enforcement of write operations at the category

level in the case of the Bell-LaPadula policy. Forcing encryption with a set of attributes requires significant
changes to either of the ABE schemes and we will leave it as an open problem.

2. PRELIMINARIES

We will first start by describing some introductory notions regarding mandatory policies and attribute-

based encryption which we will later use to define our solution for cryptographically enforcing mandatory
policies.

2.1. Mandatory access control policies

A predictable and strictly controlled flow of information is crucial when it is required to ensure properties

such as data confidentiality or integrity. For this reason, mandatory policies are usually designed alongside a
lattice such that the information flow will mirror the structure of the lattice. These lattice-based access control
policies assign security classes (clearances and labels) to objects and subjects. The flow of information will

then be regulated according to this association.
Dorothy Denning has formally defined the information-flow model in [4] as being the tuple FM = < N, P,

SC, ⊕, →> where:

• N = {a, b,...} is the set of objects in the system. It includes the active objects represented by the users.

• P = {p, q,...} i s the set of processes running on behalf of the users.

• SC = {A, B,...} is the finite set of security classes. Each object o ∈ N and each process p ∈ P are associated

with a security class from SC.

3 Cryptographic access control for mandatory security policies using attribute-based encryption 415

• ⊕: SC × SC → SC is a binary operator for combining security classes that is commutative and

associative. Its application to any two security classes A and B results in a security class which contains

information obtained from both A and/or B.

• → is defined over the elements of the Cartesian product SC × SC and represents the flow relation. A →

B indicates that information from objects associated with the A security class can be transferred to objects

whose security class is B. Flow policies are defined in terms of the → relation and any information flow

model is considered secure if the execution of any chain of operations results in a flow which adheres to

the policy’s definitions.

Denning has also defined a set of axioms for which the tuple < SC, →, ⊕, ⊗ > forms a bounded lattice.

Such a lattice comprises of a finite partially ordered set that has both a lower bound and an upper bound relative

to the flow relation →.

The principles are the following:

1. < SC, →> is a partially ordered set, otherwise the flow relation → is inconsistent:

• reflexivity: information is permitted to flow from an object to itself.

• transitivity: transferring information from a class A to a class C through an intermediary class B is

equivalent to transferring information from A directly to C.

• anti-symmetry: if information can flow between two security classes A and B in both directions

then the classes are redundant and thus the same.

2. SC is a finite set. This is a reasonable requirement for any practically implemented system.

3. The class combining operator ⊕ joins any two classes A, B ∈ SC into their least upper bound and is

totally defined over SC. These two properties imply that ⊕ can be used to compute the upper bound of

the entire lattice denoted H.

4. The application of the ⊗ operator to any two classes A, B ∈ SC results in their greatest lower bound. It

can be used to obtain the lower bound of the lattice denoted L, which is equivalent to the publicly

available information in a system or the empty set ∅ if no such information is contained within the

system in question.

Richer and more expressive information flow policies can be obtained by combining two or more lattices
using the Cartesian product.

Any policy defined over the resulting lattice structure will permit the flow of information only if the
corresponding flows are permitted in all of the individual lattices.

In other words, the overall flow relation is described as a logical AND over the flow relations of the lattices
that were part of the Cartesian product: → = →1 ∧ →2 ∧···∧ →n.

The most common use of such combinations are mandatory policies defined over a set of security levels

together with a set of security categories. The security classes defined by Denning are now formed from an
authorization level and a subset of categories and the relation between them is usually called dominance. The
information flow relation is defined as follows:

A → B ⇐⇒ level(A) ≤ level(B) AND categories(A) ⊆ categories(B)

Formally, the security levels correspond to a lattice over a totally ordered set, while the power 3 set of

categories along with the include operator ⊆ form a lattice over a partially ordered set.

The Biba [5] and Bell-LaPadula [6] policies make use of such Cartesian products in order to ensure data
integrity and respectively confidentiality.

416 Daniel Plecan 4

2.2. Attribute-based encryption

This section reviews some of the formal definitions introduced and used by the authors of [2] and [3] to
construct and prove the security of ABE schemes for both monotonic and non-monotonic access structures.

2.2.1. Access structures

Definition 2.1. If {P1, P2,..., Pn} is a set of participants, then an access structure is a collection A
⊆ 2{P1, P2, ..., Pn} \ {∅} of non-empty subsets of {P1, P2, ..., Pn}. The access structure is considered monotone if:

B ∈ A and B ⊆ C ⇒ C ∈ A, ∀ B, C.

The sets in A are called the authorized sets of participants, while those not in A are the unauthorized sets
of participants.

In the context of ABE, the attributes will play the role of the participants and this means that A will
encompass the authorized sets of attributes.

2.2.2. Algorithms of attribute-based encryption schemes

A key-policy attribute-based encryption scheme as designed by the authors of [2] is composed from the
following four algorithms:

• Setup: A non-deterministic algorithm that takes as input the security parameter and outputs the public

parameters PK and the master key MK.

• Encryption: A non-deterministic algorithm that, given a message m, a set of attributes γ and the public

parameters PK, computes the ciphertext E of m.

• Key generation: A non-deterministic algorithm that takes as input an access structure A, the master key

MK and the public parameters PK and outputs a decryption key D that includes the access structure A.

• Decryption: A deterministic algorithm that given as input a ciphertext E of a message m encrypted with

the set of attributes γ, a decryption key D associated with an access control structure A and the public

parameters PK, outputs m if γ ∈ A, otherwise an error is thrown.

2.2.3. The selective-set model for ABE

The security against chosen plaintext attacks of an attribute-based encryption scheme is proven using the

selective-set model for ABE, comprised of the following steps:

• Init: The adversary A declares a set of attributes γ upon which he will be challenged.

• Setup: The challenger runs the Setup algorithm of ABE and transfers the public parameters PK to the

adversary.

• Phase 1: The adversary can issue requests for private keys for a set of access structures Ai, where γ ∉Ai,

∀i.

• Challenge : The adversary submits two messages m0 and m1 such that |m0| = |m1|. The challenger

randomly chooses a bit b = {0, 1} and encrypts mb with γ. The resulting ciphertext is given to the

adversary.

• Phase 2: Phase 1 is repeated.

• Guess : The adversary outputs a guess b0 of b.

5 Cryptographic access control for mandatory security policies using attribute-based encryption 417

The advantage of A in this game is given by the probability 𝑃𝑟[𝑏′ = 𝑏] −
1

2
.

The selective-set model can also handle chosen ciphertext attacks if decryption queries are allowed in

Phase 1 and Phase 2.

Definition 2.2. An attribute-based encryption scheme is secure in the selective-set model of security if all

polynomial-time adversaries have at most a negligible advantage in the selective-set game.

2.2.4. Bilinear maps

If we consider 𝔾1 and 𝔾2 to be two multiplicative cyclic groups of prime order p, g a generator of 𝔾1 and

e: 𝔾1 × 𝔾1 → 𝔾2 a bilinear map, then e exhibits the following characteristics:

• Bilinearity: and a, b ∈ Zp.

• Non-degeneracy: e(g, g) ≠1.

• Symmetry: e(ga, gb) = e(g, g)ab = e(gb, ga), ∀a, b ∈ Zp.

𝔾1 is said to be a bilinear group if its corresponding group operation and the bilinear map e are both

efficiently computable.

2.2.5. The decisional Bilinear Diffie-Helman (BDH) assumption

If a, b, c, z are randomly extracted from ℤp and g is a generator of 𝔾1, then the decisional BDH assumption

states that there exists no probabilistic polynomial-time algorithm ℬ that can distinguish the tuple (A = ga, B =

gb, C = gc, e(g, g)abc) from the tuple (A = ga, B = gb, C = gc, e(g, g)z) with more than a negligible advantage. The
advantage of ℬ is:

| Pr[ℬ (A,B,C,e(g, g)abc) = 0] − Pr[ℬ (A,B,C,e(g, g)z) = 0] |

where the probability is considered over the random choice of the generator g, the random choice of

a, b, c, z ∈ ℤp and the random bits consumed by ℬ.

3. OUR SOLUTION

The central authority that defines the rules of mandatory policies also intervenes in both the setup phase of
the system by assigning security classes to users and objects and also during normal operation for access control
mediation and enforcement, very much like a reference monitor. This latter fact is disadvantageous because it

requires users and/or their associated subjects to authenticate themselves before each access operation. Also,
more importantly, the availability of the central authority is critical for the proper functioning of the system,

which inevitably makes it a potential performance bottleneck and single point of failure. Additionally, even
though such systems usually have their storage components placed in a protected area, the data is persisted in

clear and that means it is still susceptible to theft in case the containers are compromised.
A more distributed approach to mandatory policies is therefore desirable so as to make possible access

control enforcement without the continuous intervention of a reference monitor during the normal operation
of the system. Having the data secured by an additional layer of protection such as encryption is also required.
Both goals can be achieved by using attribute-based encryption: data can be encrypted and the private keys

and the public encryption parameters can be generated and distributed in a manner that precisely enforces the
lattice structures that underline these policies. As such, the central authority will only be used to initialize the

system and to add users and resources. Access operations will no longer require mediation since access control
will be a consequence of the employed encryption scheme, with subjects being able to access the storage

containers directly.

418 Daniel Plecan 6

The rest of the section describes how we can carry out this modeling, both for the general case of policies
based on the information flow model as defined by Denning and, more specifically, for the Biba and Bell-

LaPadula policies where the Cartesian product between security levels and security categories is used to obtain
richer lattice structures.

3.1. Cryptographic enforcement of general mandatory policies

Let the tuple FM = < S, O, SC, ⊕, →> be an information flow model and the tuple L = < SC, →, ⊕, ⊗

> a bounded lattice as defined by Denning, where O is the set of objects, S is the set of subjects acting on

behalf of users, SC is the set of security classes, ⊕ is the class combining operator, ⊗ is the lower bound
operator and → is the flow relation. We also consider c: S ∪ O → SC a function that returns the security class

associated with a subject or an object. The bounds imposed on the flow of information by a general lattice-
based mandatory policy can then be defined in terms of read and write operations as follows:

• read operations: a subject s ∈ S can read an object o ∈ O if c(o) → c(s). The lattice structure must allow

for information to flow from the security class of o to the security class of s.

• write operations: a subject s ∈ S can write into an object o ∈ O if c(s) → c(o). The lattice structure must

allow for information to flow from the security class of s to the security class of o.

The semantics of the flow relation → will be given by the protection goals the policy sets out to achieve

such as confidentiality in the case of the Bell-LaPadula model or integrity in the case of the Biba model. The
general policy can accommodate any kind of restrictions over the information flow.

At a high level, general mandatory policies are cryptographically enforced through ABE by considering
the security classes from SC as attributes. Each data object is encrypted with an attribute corresponding to its

security class. Private keys are generated such that a user can decrypt an object only if information can flow
from the security class of the object to the security class of the user. This is done by constructing each access

tree to capture the security class of the corresponding user and the ones below it in the lattice structure. In other
words, the tree will only be satisfied by security classes that flow into the class of the user, hence enforcing
read access.

As far as write operations are concerned, if enforcement no longer relies on mediation then a malicious
user can always choose to bypass encryption or use other communication channels to send information to

unauthorized parties. However, we will only focus on preventing users from generating valid encryptions that
would violate the bounds placed on the information flow by a policy. Thus, they should be able to encrypt data

only with security classes that are above theirs in the lattice structure so that the flow of information is permitted
from their class to the destination class.

We will use the ABE scheme for monotonic access structures defined by Goyal et. al in [2] for modeling
general mandatory policies. Let SC = {sc1, sc2,..., scn} be a set of security classes and U = {1,2,...,n} a universe

of attributes. We consider a one-to-one mapping between them such that i ∈ U is the attribute associated with
the security class sci ∈ SC. We can now formally define two functions that given a security class construct an

access tree and respectively generate encryption parameters for ABE for that class:

• Access Tree Generation (sc, L, U): Given a bounded lattice L = < SC, →, ⊕, ⊗ >, a security class sc

∈ SC and a universe of attributes U, the function constructs an access tree T that will be satisfied by any

security class equal to or below sc in the lattice structure. T will be used by the Key Generation from

the attribute-based encryption scheme to produce a key that allows a user to decrypt an object only if

information can flow from the security class of the object to the security class of the user.

T will have a leaf node for each attribute i ∈ U such that sci → sc, sci ∈ SC. The leaves are then connected

to an OR gate, which serves as the root node. Since the private key of any user belonging to the security
class sc will not be satisfied by classes above sc in the hierarchy, users can not perform decryption

operations that would result in a violation of the flow relation →.

7 Cryptographic access control for mandatory security policies using attribute-based encryption 419

• Encryption Parameters Generation (sc, L, PK): Given a bounded lattice L = < SC, → , ⊕, ⊗ >, a

security class sc ∈ SC and a set of public parameters generated by the Setup algorithm of the ABE

scheme PK = {T1, T2, ..., Tn, Y }, the function filters out parameters such that encryption is only possible

with attributes corresponding to security classes above sc in the lattice structure. The remaining

parameters are randomized in order to prevent collusion and then given to a user associated with sc. He

will be able to encrypt data with security classes to which information can flow from sc.

If x is a value extracted uniformly at random from Zp, the returned parameters will be:

EPsc = {Y x, {Ti
x | sc → sci, sci ∈ SC}}

Note that raising the public parameters to the power of a random value x is precisely what happens
during the Encryption algorithm of the monotonic attribute-based encryption scheme. This guarantees

that the randomization process does not affect the correctness of the cryptosystem: the random s value
will simply be replaced by x · s, nothing else changes. The users will be able to utilize the scheme in the
same way as before.

Since any user belonging to the class sc will not possess encryption parameters associated with the
attributes for which the security classes are below sc in the hierarchy, he cannot encrypt with any
attributes that would violate the flow relation →.

Let L = < SC, →, ⊕, ⊗ > be a lattice where SC = {SC1, SC2, SC3, SC4} such that

SC1 → SC2 → SC3 → SC4, as illustrated on the right.

Let U = {1, 2, 3, 4} be a universe of attributes such that i is the attribute associated with the security
class SCi. Then the public key generated by the Setup algorithm of ABE is PK = {T1, T2, T3, T4, Y}.

Encryption Parameters Generation (SC3, L, PK) returns the encryption parameters

𝐸𝑃𝑆𝐶3
= {𝑇3

𝑥 , 𝑇4
𝑥 ,𝑌𝑥 } where x is a random value from Zp.

The tree generated by the Access Tree Generation (SC3, L, U) function is illustrated on the right.

Fig. 1 – Example of access tree and encryption parameters generation for general mandatory policies.

Figure 1 illustrates an example of how an access tree is generated and how the public parameters are filtered

out.
We will now describe how these two functions are used in a system that cryptographically enforces a

general mandatory policy. During the setup phase, a trusted component associates each object and each user
with a security class. The attribute-based cryptosystem is also initialized through the Setup algorithm using
the security classes set as attributes. Data objects are then encrypted using ABE with the attributes that

correspond to their security classes. For each user, his security class is used to generate an appropriate access
tree with the Access Tree Generation function which will in turn be used to issue a private key for the

attribute-based scheme. The security class is also used to filter out forbidden public parameters and randomize
the remaining ones with the help of the Encryption Parameters Generation function. The private key and

the remaining encryption parameters are then handed out to the user. At this point the initialization step is
considered complete and users can perform read and write operations through decryption and encryption,

420 Daniel Plecan 8

respectively, without the intervention of a reference monitor. The central authority will only perform actions
when users and objects are added into the system.

We will now discuss the security of the proposed solution. We will prove that if the read operations lead
to a violation of the information flow bounds then a simulator can be constructed that has a non-negligible

advantage in the selective-set model security game for attribute-based encryption which, as proven in [2],
ultimately leads to a contradiction of the decisional BDH assumption. We also show that if write operations
that do not follow the policy can occur, we can build a simulator that can play the simple decisional Diffie-

Hellman (DDH) game with a non-negligible advantage, which would contradict the DDH assumption.

Security of read operations . Failure to properly enforce read activities implies that a subject s ∈ S
associated with a security class c(s) can decrypt an object o ∈ O associated with a security class c(o) in spite

of the fact that c(o) → c(s) does not hold in the lattice L. In ABE terms, this means that decryption is possible

even if the attribute with which the ciphertext is encrypted (c(o)) does not satisfy the access tree T generated
by calling the Access Tree Generation function with the c(s) security class, tree based on which the private
key was generated.

Let A be an adversary that can perform such decryptions with a non-negligible probability. We show how
we can build a simulator S that uses A to attack the ABE scheme in the selective-set model with non-negligible

advantage.

• Init: The challenger C generates the groups G1 and G2 with an efficient bilinear map e: G1 × G1 → G2,

a generator g and the universe of attributes U. The simulator S sets a bounded lattice L = < SC, →, ⊕,

⊗ > such that each i ∈ U is the attribute associated with the security class sci ∈ SC.

S then declares γ = {x}, x ∈ U the set of attributes it wants to be challenged upon such that ∃ sci ∈ SC

with scx ≠ sci for which scx → sci does not hold. In other words, γ contains an attribute corresponding to

a security for which there exists at least one other class below it in the lattice structure. If we assume
that the set of security class SC is not trivial and contains more than one element then at least such one

element is guaranteed to exist because of the anti-symmetry property of the partial order relation →. An
example of a security class that satisfies this property is the upper bound of the lattice obtained using
the class combining operator: SC1 ⊕ ··· ⊕ SCn

• Setup: The challenger initializes the ABE cryptosystem to obtain the master key MK = {t1, t2,..., tn, y}

and the public key PK = {T1 = gt1, T2 = gt2, ..., Tn = gtn, Y = e(g, g)y}. The simulator receives PK, which in

turn gives it to the adversary, together with the set γ and the security class scx.

• Phase 1: S issues queries to the challenger for private keys associated with access trees generated by

calls to the function Access Tree Generation with security classes sci ∈ SC such that scx↛sci. The

fashion in which the attribute x was chosen in the Init step assures us that SC contains at least one such

class. The selection criteria for sci and the definition of the Access Tree Generation function lead to the

conclusion that γ will not satisfy any of the generated trees.

All the user keys that the simulator receives will be given to A.

• Challenge : The simulator S generates two challenge messages m0 and m1 and sends them to C. The

challenger extracts uniformly at random a bit b ∈ {0, 1} and encrypts mb with γ. The resulting ciphertext

E is given to S which then sends it to the adversary A.

• Phase 2: Phase 1 is repeated.

• Guess : A will try to decrypt the ciphertext E despite the fact the access trees associated with the keys he

obtained during Phase 1 and Phase 2 are not satisfied by the set of attributes γ. If decryption is

successful, the adversary will transfer the obtained message m to S which compares it to m0 and m1 and

gives the challenger a guess b0 of b such that mb0 = m. In case the adversary fails to decrypt E he sends ⊥

9 Cryptographic access control for mandatory security policies using attribute-based encryption 421

to S. The simulator then extracts the guess b0 uniformly at random from {0, 1} and gives it to the

challenger.

A has, by definition, the probability to decrypt E. If decryption is successful then the simulator can tell
for sure which challenge message was encrypted. Thus, the probability of guessing b in this case is equal

to 𝜖. On the other hand, if decryption is unsuccessful then the probability of guessing 𝑏 is
1

2
 since the

simulator extracts the guess b0 uniformly at random from {0, 1}.

The overall probability for S to guess 𝑏 is [𝑏′ = 𝑏] = 𝜖 +
1

2
 . The selective-set model for attribute-based

encryption specifies that the advantages of the simulator S is 𝑃𝑟[𝑏′ = 𝑏] −
1

2
= 𝜖 +

1

2
−

1

2
= 𝜖.

Goyal et al. have proven that S can be used to build another simulator that plays the decisional BDH

game with advantage . The fact that is non-negligible leads to a contradiction of the decisional BDH
assumption.

Security of write operations . Erroneous enforcement of write activities means that a subject s ∈ S
associated with a security class c(s) can encrypt data with an attribute k corresponding to a security class sck in

spite of the fact that c(s) → sck does not hold in the lattice L. Considering the definition of the Encryption

Parameters Generation, this scenario is equivalent to saying that a user can create a valid encryption in the

ABE scheme with an attribute for which he does not possess the corresponding encryption parameter. This
means that the user can somehow determine Tk

x = gx·tk despite the fact that Tk
x ∉ EPc(s) = {Y x = e(g, g)x·y, {Ti

x =

gx·ti | c(s) → sci, sci ∈ SC}}.

Since the value of the generator g is publicly known, the user is left to find out the value x · tk. We will

focus on the probability of computing tk. Note that the values x, y and ti, ∀i ∈ U are chosen uniformly at random

from Zp and are thus independent of one another. This means that the user gains no information whatsoever
about tk from the encryption parameters already in his possession. In this case, the only way tk can be determined
is by randomly guessing it from the entire domain Zp. This is made infeasible by choosing an appropriate

security parameter κ so that p is sufficiently large and thus ensure security. Should the probability to guess tk

still be non-negligible then the other elements of the private key MK from the ABE scheme can also be

determined since they are no different from tk from a statistical point of view. This would allow the user to
generate private keys that can decrypt any kind of ciphertext, irrespective of the attributes they are encrypted

with. We have already seen that such decryptions lead to a contradiction of the decisional BDH assumption.

There is, however, a scenario in which the user/subject can own a value that is dependent on tk. This
happens when sck → c(s) because, based on the construction of the Access Tree Generation function, the

attribute k will be part of the user’s private key. Thus, the user will possess the value where x is
the leaf node associated with k : k = att(x). qx is the polynomial computed for the leaf node by the Key

Generation algorithm from the ABE scheme. Taking into account that the points of the polynomial and y are

chose uniformly at random from Zp we conclude that the value qx(0) is also random. We now prove that if there

exists an adversary A that can determine tk with non-negligible probability if it possesses , then a
simulator can be constructed that uses A to play the decisional Diffie-Hellman game with a non-negligible

advantage.
The decisional Diffie-Hellman (DDH) assumption states that, given a multiplicative cyclic group G of

order p and g a generator for G, there exists no probabilistic polynomial-time algorithm that can distinguish
the tuple (A = ga, B = gb, gab) from the tuple (A = ga, B = gb, gc) with more than a negligible advantage, where
a,b and c are chosen randomly and independently from Zp.

Let S be a simulator that uses A to play the DDH game as follows:

• The challenger C determines the group G of prime order p and with generator g. It then extracts

uniformly at random from Zp the values a, b and c. A bit u ∈ {0, 1} is also randomly chosen. If u = 0, C

422 Daniel Plecan 10

sets the tuple (A = ga, B = gb, Z = gab), otherwise it sets (A = ga, B = gb, Z = gc). The tuple (A, B, Z) is

then given to the simulator S.

• S gives A from the tuple to the adversary A.

• A = ga can be seen as . We know that A has, by definition, the probability of determining the

denominator in such a scenario. It gives the simulator S the value if the computation was successful or

⊥ to indicate that it failed.

• If the simulator receives from A it then computes and compares the result to B. If B′ = B it

sends to the challenger C a guess u′ = 0 of u and u′ = 1 otherwise. If it instead receives ⊥ from the

adversary, S extracts u′ uniformly at random from {0, 1} and gives it to C.

When Z = gab, if the adversary determined then 𝐵′ = 𝑍
1

𝑎 = 𝑔𝑎𝑏
1

𝑎 = 𝑔𝑏 = 𝐵. This means that in this
case, the probability for the simulator to guess u is the probability of A to determine the denominator.

If the simulator receives ⊥ from the adversary, then the probability to guess 𝑢 is
1

2
 due to the random

choice of u′.

The overall probability of S to guess 𝑢 is 𝑃𝑟[𝑢′ = 𝑢] = 𝜖 +
1

2
 which results in the advantage of the

simulator in the DDH game to be: 𝑃𝑟[𝑢′ = 𝑢] −
1

2
= 𝜖 +

1

2
−

1

2
= 𝜖.

Thus, the existence of such an adversary A contradicts the decisional Diffie-Hellman assumption.

It is also desirable that read and write operations are secure against collusions. If two or more users come
together with their respective private keys and encryption parameters, they should not be able to decrypt
messages or encrypt with attributes for which it would be impossible for them to do so on their own. Read

operations rely on the fact that the private keys of the attribute-based encryption scheme are collusion resistant
themselves.

As far as write operations are concerned, it should not be possible for encryption parameters belonging to
different users to be used together to create valid encryptions, unless the parameters are associated with the

same attributes. This is ensured by the randomization step of the Encryption Parameters Generation

function. The encryption parameters will be different from user to user and combinations between them will

make the interpolation at the exponent during decryption impossible. Note that such parameters can be
combined if they are associated with the same attribute but this is not an issue since it implies that the colluding
users can already encrypt with the attribute in question, meaning that no advantage is gained.

Formally, we consider two users u1 and u2 with their respective encryption parameters EP1 = {Y x1, {Ti
x1 |

c(u1) → sci, sci ∈ SC}} and EP2 = {Y x2, {Tj
x2 | c(u2) → scj, scj ∈ SC}}.

Collusion between them implies that they can compute the triple (Yz, Ti
z, Tj

z) where i≠j, Tj
x1 ∉

 and thus they can encrypt with both attributes i and j despite them not being able to

do so on their own.

We consider the case when u1 and u2 have one encryption parameter each for different attributes. We prove

that if there exists an adversary A that has a non-negligible probability to use the tuple

(𝑌𝑥1 = 𝑒(𝑔, 𝑔) 𝑥1·𝑦 , 𝑇𝑖
𝑥1

 = 𝑔𝑥1·𝑡𝑖 , 𝑌𝑥2 = 𝑒(𝑔, 𝑔)𝑥2·𝑦 , 𝑇𝑗
𝑥2

 = 𝑔𝑥2·𝑡𝑗)

to obtain (Y z = e(g, g)z·y, Ti
z = gz·ti, Tj

z = gz·tj) where x1, x2, ti, tj are extracted uniformly at random from Zp, i ≠ j

and z ∈ Zp then we can construct a simulator S that uses A to play the decisional BDH game with non-negligible

advantage. The steps are the following:

• The challenger C generates the groups G1 and G2 with an efficient bilinear map e: G1×G1 → G2 and a

generator g for G1. It then extracts uniformly at random from Zp the values a,b,c and k . A bit u ∈ {0, 1}

11 Cryptographic access control for mandatory security policies using attribute-based encryption 423

is also randomly chosen. If u = 0, C sets the tuple (A = ga, B = gb, C = gc, Z = e(g, g)abc), otherwise it sets

(A = ga, B = gb, C = gc, Z = e(g, g)k). The tuple (A, B, C, Z) is then given to the simulator S.

• S sets the values (Z, Ati, e(Btj, C), Btj) = (Z, ga·ti, e(g,g)tj·bc, gtj·b) where ti and tj are randomly chosen from

Zp. The tuple is then sent to the adversary A.

• The adversary tries to use the tuple (Z, ga·ti, e(g, g)tj·bc, gtj·b) to compute the values (e(g,

g)z·bc, gz·ti, gz·b). Note that the probability to do so is only if Z = e(g, g)abc, as per the definition of A. It

then sends the attempt (A′, B′, C′) to S.

• The simulator performs two checks to confirm whether the adversary’s attempt was successful or not:

– Compute e(C′, C) and compare the result to A′.

– Compute e(B′, B) and compare the result to e(g, C′ti).

If both hold then the simulator sets u′ = 0 and gives it to the challenger as a guess of u. Otherwise, the

challenger receives u′ = 1. This is because the above comparisons return true only if the challenger successfully

computes the values (A′ = e(g, g)z·bc,B′ = gz·ti,C′= gz·b) which means that Z = e(g,g)abc:

e(C′, C) = e(gz·b, gc) = e(g, g)z·bc = A′

and

𝑒(𝐵′ , 𝐵) = 𝑒(𝑔𝑧·𝑡𝑖 ,𝑔𝑏) = 𝑒(𝑔, 𝑔)𝑧·𝑡𝑖·𝑏

 𝑒(𝑔, 𝐶
′
𝑡𝑖

) = 𝑒(𝑔, (𝑔𝑧·𝑏) 𝑡𝑖) = 𝑒(𝑔, 𝑔𝑧 ·𝑏·𝑡𝑖) = 𝑒(𝑔,𝑔)
𝑧·𝑡𝑖·𝑏

When the challenger sets u = 0 the adversary has, by definition, the probability 𝜖 of successfully computing

the required values. This means that the probability for S to guess u is either 𝜖 if A’s attempt is successful or

otherwise. That means that the probability to guess u when it is 0 is:

𝑃𝑟[𝑢′ = 𝑢|𝑢 = 0] = 𝜖 +
1

2
.

When u = 1 the adversary does not gain any information to compute the tuple since Z = e(g, g)k. This means

that the probability for the simulator to guess u is: 𝑃𝑟[𝑢′ = 𝑢|𝑢 = 1] =
1

2
.

The overall advantage of the simulator S in the decisional BDH game is thus:

We conclude that if the probability of the adversary is non-negligible then the advantage of the simulator
S in the decisional BDH game is also non-negligible which contradicts the BDH assumption.

3.2. Cryptographic enforcement of the Bell-LaPadula and Biba policies

The Biba and Bell-LaPadula policies combine security levels with security categories in order to enforce

data integrity and confidentiality, respectively. The underlying lattice structures L = (SC, ≥) are the result of

424 Daniel Plecan 12

the Cartesian product between a total order over the set of security levels (L, ≤) and a partial order over the
power set of the set of categories (P(C), ⊆) where SC = L × P(C) and the dominance relation ≥ is defined as
follows:

sc1 = (l1, C1) ≥ sc2 = (l2, C2) ⇐⇒ l2 ≤ l1 ∧ C2 ⊆ C1

∀sc1, sc2 ∈ SC, ∀l1, l2 ∈ L, ∀C1, C2 ∈ P(C)

Whilst both models can be cryptographically enforced using the general technique described in the previous
section that maps security classes to attributes, we would lose the granularity offered by the fact that a security
class is composed from a security level and a subset of categories. Moreover, if we consider |L| = n and |C| =

m then |SC| = n · 2m. This implies a huge number of attributes and also large sizes for the ABE user keys. We
therefore want to map the security levels and the security categories directly to attributes. This not only

considerably decreases the size of the universe of attributes (n+m), but it also allows us to construct richer and
more expressive access trees while at the same time exploiting the possibility of encrypting data with several

attributes: a security level and multiple categories.
Let L = {l1, ..., ln} be a set of security levels, C = {c1, ..., cm} a set of security categories and the universe

of attributes U = {1, ..., n, n + 1, ..., n + m}. The one to one mapping from security levels and categories to
attributes is done by the bijective function a: L∪C → U. We can now update the Access Tree Generation and

Encryption Parameters Generation functions to support security levels and security categories in order to
enforce read and write operations according to the security rules of either Biba or Bell-LaPadula policies.

3.2.1. Modeling the Biba policy

In the Biba model, security classes are replaced by integrity classes: L = (IC, ≥) where IC = L × P(C). If
we consider β : S ∪ O → IC a function that returns the integrity class of a subject or an object and the sets of

subjects and objects S and respectively O, the information flow regulated by the two properties:

• Simple-integrity property: A subject s ∈ S can read data from an object o ∈ O only if β(o) ≥ β(s).

• Integrity *-property: A subject s ∈ S can write data to an object o ∈ O only if β(s) ≥ β(o).

Using the same ABE scheme for monotonic access structures, the two functions can be defined as follows:

• Access Tree Generation (ic, L, U): Given a bounded combined lattice L, a universe of attributes U

and an integrity class ic = (l, Cic) ∈ IC, the function constructs an access tree T that will be satisfied by

any integrity class for which its security level dominates l and its subset of categories includes Cic. T

will be used by the Key Generation from the attribute-based encryption scheme to produce a key that

allows a user to decrypt an object only if information can flow from the integrity class of the object to

the integrity class of the user (β(o) ≥ β(s)).

The following steps are required to build T:

– Let TL be the subtree of T that covers the security levels. TL has a leaf node for each attribute a(li)

such that l ≤ li,∀li ∈ L. The leaves are then connected to an OR gate, which serves as the root node

of TL.

– Let TC be the subtree of T that covers the security categories. TC has a leaf node for each attribute

a(cj) associated with a category cj ∈ Cic. The leaves are then connected to an AND gate, which

serves as the root node of TC.

– The subtrees TL and TC are both connected to an AND gate, which serves as the root node of T.

Because the simple-integrity property requires the integrity class of the object to dominate that of the

subject in order for read access to be permitted, the private key obtained from T will allow for decryption
of messages encrypted with a security level above or equal to l and at least all the categories found in

Cic (to model the inclusion relation).

13 Cryptographic access control for mandatory security policies using attribute-based encryption 425

• Encryption Parameters Generation (ic, L, PK): Given a bounded lattice L, an integrity class ic = (l,

Cic) ∈ IC and a set of public parameters generated by the Setup algorithm of the ABE scheme PK = {T1,

..., Tn, Tn+1, ..., Tn+m, Y}, the function filters out parameters such that encryption is only possible with

attributes corresponding to security levels below l and categories found in the set Cic. This is because

integrity *-property requires the integrity class of the subject to dominate that of the object in order for

write operations to be allowed. The remaining parameters are randomized in order to prevent collusion

and then given to a user associated with ic.

 If x is a value extracted uniformly at random from Zp, the returned parameters will be:

We have already seen that raising the public parameters to the power of a random value x does not affect
the attribute-based encryption scheme in any way.

Since any user belonging to the class ic will not possess encryption parameters associated with the
attributes for which the security levels are above l and the categories are not included in Cic, he cannot

encrypt with any attributes that would violate the integrity *-property.

Figure 3 illustrates an example of how an access tree is generated and how the public parameters are filtered
out in the case of the Biba model.

As far as security and resistance to collusion are concerned, the discussions and proofs from the
enforcement technique for general mandatory policies also apply here.

3.2.2. Modeling the Bell-LaPadula policy

The policy sets out to ensure data confidentiality and is defined over a set of subjects S and a set of objects
O. If we consider α : S ∪ O → SC a function that returns the security class assigned to a subject or an object,

the flow of information in the Bell-LaPadula mandatory policy is governed by the two following rules:

• Simple-security property: A subject s ∈ S is allowed to read the information contained in an object

o ∈ O if α(s) ≥ α(o).

• *-property: A subject s ∈ S is allowed to write data into an object o ∈ O if α(o) ≥ α(s).

Before describing the Access Tree Generation and Encryption Parameters Generation functions, we
note that the access trees for a security class sc = (l,Csc) should not be satisfied if the ciphertext is encrypted

with an attribute corresponding to a category that is not found in Csc. This means that in order to avoid
duplication of attributes (to include the negations of each attribute) and ciphertexts of large sizes (messages

have to be encrypted with attributes corresponding to the negation of the missing attributes), the non-monotonic
ABE scheme [3] is more appropriate. However, it needs to be slightly modified to support filtering of
encryption parameters. The alterations to the algorithms are the following:

• Setup(d): The encryption parameters corresponding to attributes are given by the functions T,V : Zp

→ G2. This means that encryption is possible with any attribute 𝑥 ∈ ℤ𝑝
∗ . This approach does not lend

itself well to preventing a user to create ciphertexts with particular attributes. For this reason we will

consider a predefined universe of attributes U = {1,..., n} with n ≥ d and replace the function T (and the

underlying polynomial h(x)) with the set of elements {Ti = gti}i∈U, where ti are random elements from Zp.

The other elements are chosen in the same manner as in the initial solution. The public key then becomes:

PK = {g, g1 = gα,g2 = gβ = gq(0), gq(1), ..., gq(d) ,T1, T2, ..., Tn}

The master key is MK = {α, t1, t2,..., tn}.

• Encryption (m, γ, PK): The encryption of a message m ∈ G2 with a set of d attributes γ ⊆ U is:

426 Daniel Plecan 14

where s ∈ Zp is chosen uniformly at random.

• Key Generation (𝐴, MK, PK): Only the components of the private key corresponding to positive

attributes are changed. As such, for each unprimed attribute xi ∈ P we have:

The rest of the private key is computed as in the scheme proposed by Ostrovsky et al.

• Decryption (E, D): The decryption process also changes only in relation to unprimed attributes. For

each positive attribute 𝑥𝑖̌∈ γ′ (xi ∈ γ) the following element is evaluated:

The Zi elements corresponding to negative attributes are computed as in the scheme for non-monotonic
access structures [3], as well as the reconstruction of the encrypted message.

We can now define the two functions used to cryptographically enforce Bell-LaPadula policies:
• Access Tree Generation (sc, L, U): Given a bounded combined lattice L, a universe of attributes U

and a security class sc = (l, Csc) ∈ SC, the function constructs an access tree T that will be satisfied by

any security class for which its security level is dominated by l and its subset of categories is included

in Csc. T will be used by the Key Generation from the attribute-based encryption scheme to produce a

key that allows a user to decrypt an object only if information can flow from the security class of the

object to the security class of the user (α(s) ≥ α(o)).

The following steps are required to build T:

– Let TL be the subtree of T that covers the security levels. TL has a leaf node for each attribute

a(li) such that li ≤ l,∀li ∈ L. The leaves are then connected to an OR gate, which serves as the root

node of TL.

– Let TC be the subtree of T that covers the security categories. TC has a negated leaf node for

each attribute a(cj) associated with a category that is not found in Csc: cj ∈ C \Csc. The leaves are

then connected to an AND gate, which serves as the root node of TC.

– The subtrees TL and TC are both connected to an AND gate, which serves as the root node of T

.

Because the simple-security property requires the security class of the subject to dominate that of the

object in order for read access to be permitted, the private key obtained from T will allow for decryption
of messages encrypted with a security level lower or equal to l. As far as categories are concerned,
decryption of messages encrypted with at least one category that is not found in Csc will be denied. This

is because the subset of categories belonging to the subject needs to include the subset of the object.
• Encryption Parameters Generation (sc, L, PK): Given a bounded lattice L, a security class sc = (l,

Csc) ∈ SC and a set of public parameters generated by the Setup algorithm of the ABE scheme for non-

monotonic access structures PK = {g, g1 = gα, g2 = gβ = gq(0), gq(1),...,gq(d), T1, T2,..., Tn, Tn+1,..., Tn+m}, the

function filters out parameters such that encryption is only possible with attributes corresponding to

security levels above l. As far as categories are concerned, no parameters are filtered out because the

requirement is not to prevent encryption with a certain category but to ensure that each ciphertext is

associated with at least all the categories from Csc. This is because the *-property requires the security

class of the object to dominate that of the subject in order for write operations to be allowed. The

remaining parameters are randomized in order to prevent collusion and then given to a user associated

with sc.

15 Cryptographic access control for mandatory security policies using attribute-based encryption 427

If x is a value extracted uniformly at random from Zp, the returned parameters will be:

The randomization process follows the principles of the encryption algorithm, the random element s is
simply replaced by x·s, everything else stays the same. This change is transparent for the encryption and
decryption agents.

Since any user belonging to the class sc will not possess encryption parameters associated with the
attributes for which the security levels are below l, he cannot encrypt with any attributes that would violate the

*-property relative to the security levels. However, the user should be allowed to encrypt with any attribute
corresponding to a category as long as the ciphertexts include the categories from 𝐶𝑠𝑐. This requires forcing

the user to encrypt with a set of attributes which is not supported by neither ABE scheme described in [2] nor
[3] without significant alterations. An idea would be to share a secret value between the encryption parameters

corresponding to the attributes of the categories in 𝐶𝑠𝑐 such that share recovery and decryption is only possible

if the encryption parameters in question are used. We leave further discussions regarding this matter as an open
problem.

Figure 4 illustrates an example of how an access tree is generated and how the public parameters are filtered
out and randomized in the case of the Bell-LaPadula model.

The proofs regarding security and collusion resistance follow a similar reasoning as the ones from the
enforcement techniques of general mandatory policies. The randomization process is the same and the used

ABE scheme is a mix between the two presented in [2] and [3] and both have been proven secure in the
selective-set model.

Let L = (IC, ≥) be a lattice underlying a Biba policy where IC = L × P(C), L = {L1, L2, L3, L4} such that L1

≤ L2 ≤ L3 ≤ L4 and C = {x, y, z}. The two lattice structures are illustrated below (Fig. 2).

Let U = {a(L1), a(L2), a(L3), a(L4), a(x), a(y), a(z)} be a universe of attributes associated where a : L ∪ C
→ U is a function that maps an attribute to each security level and category. Then the public key generated by

the Setup algorithm of ABE is PK = {Ta(L1), Ta(L2), Ta(L3), Ta(L4), Ta(x), Ta(y), Ta(z), Y }.

Fig. 2 – Lattice structure used in the ABE scheme.

Encryption Parameters Generation (ic = (L3, {x, y}), L, PK) returns the encryption parameters

where k is a random value from Zp.

The tree generated by the Access Tree Generation (ic = (L3, {x, y}), L, U) function is illustrated below.

Fig. 3 – Example of access tree and encryption parameters generation for the Biba policy.

428 Daniel Plecan 16

Let L = (SC, ≥) be a lattice underlying a Bell-LaPadula policy where SC = L × P(C), L = {L1, L2, L3, L4}
such that L1 ≤ L2 ≤ L3 ≤ L4 and C = {x, y, z}.

The two lattice structures are illustrated in Fig. 2.
Let U = {a(L1), a(L2), a(L3), a(L4), a(x), a(y), a(z)} be a universe of attributes associated where

a : L ∪ C → U is a function that maps an attribute to each security level and category. Then the public key

generated by the Setup algorithm of ABE is

PK = {g, g1, g2, g
q(0), gq(1), ..., gq(d), Ta(L1), Ta(L2), Ta(L3), Ta(L4), Ta(x), Ta(y), Ta(z)}

Encryption Parameters Generation (sc = (L3, {x}), L, PK) returns the encryption parameters

 where k is a random
value from Zp.

The tree generated by the Access Tree Generation (sc = (L3, {x}), L, U) function is illustrated below.

Fig. 4 – Example of access tree and encryption parameters generation for the Bell-LaPadula policy.

4. CONCLUSIONS

This paper proposes a solution for enforcing mandatory access control policies through cryptography. The

motivation is that the central authority used to mediate each access request in the traditional approach inevitably
represents a single point of failure. Any functional or performance issues at its level can badly hamper the

normal use of the system. Added to that is the fact that it is desirable for data not to be stored in clear but to
have it secured by a layer of protection. This is in order to mitigate any risks of theft in case the storage is

compromised.
We have started by introducing the reader to some of the formal concepts regarding mandatory policies

and attribute-based encryption.
We have then shown how we can model the lattice structures that underline mandatory policies in order to

cryptographically enforce them through attribute-based encryption. Read operations are enforced by generating
access trees that capture the lattice structure for a given security class, while write operations rely on

randomization and careful distribution of the public parameters. We have used the monotonic ABE scheme [2]
to enforce general mandatory policies based on the information flow model defined by Denning and the Biba
policy concerned with data integrity.

We also tackle the secrecy-based Bell-LaPadula policy which requires the use of a combination between
the monotonic and non-monotonic [3] ABE schemes. This is in order to be able to express negations as well

as to filter out public parameters.

Security of both read and write operations is proven, as well as collusion resistance. We made use of the
results obtained by the authors of the ABE schemes and also of the decisional Diffie-Hellman and Bilinear
Diffie-Hellman assumptions.

Finally, we have highlighted the limitations concerning the enforcement of write operations at the category
level in the case of the Bell-LaPadula policy. Forcing encryption with a set of attributes requires significant

changes to either of the ABE schemes and we leave it as an open problem.

17 Cryptographic access control for mandatory security policies using attribute-based encryption 429

REFERENCES

1. B. W. LAMPSON, Protection, ACM SIGOPS Operating Systems Review, 8, 1, pp. 18-24, 1974.
2. V. GOYAL, O. PANDEY, A. SAHAI, B. WATERS, Attribute-based encryption for fine-grained access control of encrypted

data, Proceedings of the 13th ACM Conference on Computer and Communications security (CCS 06), pp. 89-98, 2006.
3. R. OSTROVSKY, A. SAHAI, B. WATERS, Attribute-based encryption with non-monotonic access structures, Proceedings of

the 14th ACM Conference on Computer and Communications Security (CCS 07), pp. 195-203, 2007.
4. D. E. DENNING, A lattice model of secure information flow, Communications of the ACM, 19, 5, pp. 236-243, 1976.
5. K. J. BIBA, Integrity Considerations for Secure Computer Systems, MITRE Corp., 1977.
6. D. E. BELL, L. J. LA PADULA, Secure Computer Systems: Mathematical Foundations, MITRE Corporation, 1, 1973.

