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Abstract. This paper derives conservation laws for optical solitons of Lakshmanan-Porsezian-Daniel 
model. The method of multipliers is adopted to locate a few of the conserved densities. The conserved 
quantities are finally computed for the model using soliton solutions with both Kerr law and power 
law nonlinearities. 
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1. INTRODUCTION 

The conservation laws of any physical system play a very important role in describing its dynamics. 
These laws give an insight into the physical meaning of the system. The same is true for optical solitons that 
are described by some generic models. In this case, the conservation laws for the well known nonlinear 
Schrödinger’s equation have been exhaustively studied. This paper is going to address the conservation laws 
of a different model that also describes soliton propagation through optical waveguides [1–23]. It is 
Lakshmanan-Porsezian-Daniel (LPD) equation. This model has been studied earlier and its bright, dark, and 
singular soliton solutions have been reported [6]. One of the most powerful technique to extract these laws is 
the double reduction technique using Lie symmetry analysis. This paper will employ the multiplier approach 
to retrieve conserved densities of the LPD model, which is considered with both Kerr and power laws of 
optical nonlinearity. The soliton solutions will be subsequently utilized to compute the conserved quantities 
from the derived conserved densities. The details are enumerated in the next couple of sections. 

2. GOVERNING EQUATION 

The dimensionless form of the LPD model with higher order dispersion and spatio-temporal 
dispersion (STD) is [6]:  

( ) ( )22 2 2 42 . t xx xt xxxx x x xx xxi q a q bq c F q q q q q q q q q q q q qσ α β γ λ δ∗ ∗+ + + = + + + + +  (1) 
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Here ( , )q x t is the dependent variable that stands for complex-valued wave function. The independent 
variables x  and t  represent spatial and temporal co-ordinates, respectively. Also, the group velocity dispersion is 
given by the coefficient of a  and the coefficient of STD is b . The functional F  implies the type of 
nonlinearity under study that must be k -times continuously differentiable and so it has to maintain the 
following technical condition:  

( ) ( )2 2

, 1

( , ) ( , ); .k

m n

F q q C n n m m R
∞

=

∈ − × −∪  

On the right hand side of Eq. (1), σ  stands for fourth order dispersion (4OD) while δ  is the two-
photon absorption parameter. To proceed with Eq. (1), the starting hypothesis is taken to be:  

( , ) ( , ) iq x t P x t e φ=  (2) 

where ( , )P x t  represents the shape of the wave profile, and the phase component ( , )x tφ has the following 
representation: 

( , ) .x t x tφ κ ω θ= − + +  (3) 
Here, κ  represents the soliton frequency, and ω  is the wave number, while θ  is the phase constant. 

After substituting the hypothesis (2) into Eq. (1) and splitting into real and imaginary parts one arrives at: 
2 2 4 2 3

5 2 2 2

( 6 ) ( ) ( )

( ) ( ) ( ) 0,
xxxx xx xt

x xx

P a P b P b a P P

P c F P P P P P P

σ σ κ κω ω κ σ κ α γ λ β κ

δ α β λ γ

− + − − − − − − + + − +

− + + + + =
 (4) 

and 

!Unexpected End of Formula
3 2(1 ) (2 4 ) 2( ) 4 0,t x x xxxb P a b P P P Pκ κ σ κ ω α γ λ κ σ κ− − + − + + − + =  (5) 

respectively. After assigning the coefficients of linearly independent functions to zero in (5) the following 
constraints emerge: 

0σ =  (6) 
λ α γ= +  (7) 

and the soliton speed is given by 
2

1
b av

b
ω κ

κ
−

=
−

 (8) 

provided 
1.bκ ≠  (9) 

Therefore, both constraints (6) and (7) modify (4) to 
2 2 3 5 2 2 2( ) (2 ) ( ) ( ) ( ) 0.xx xt x xxaP bP b a P P P cF P P PP P Pκω ω κ λ β κ δ α β λ γ+ + − − + − − + − + − + =  (10) 

The equation (10) will be used in the following sections to obtain conservation laws for both Kerr 
law and power law nonlinearities. 

3. KERR LAW NONLINEARITY 

For Kerr nonlinear medium, the functional is given by  
( ) ,F u u=  (11) 

which simplifies the LPD model (1) to 

( )22 2 2 42 .t xx xt xxxx x x xx xxi q a q bq c q q q q q q q q q q q q qσ α β γ λ δ∗ ∗+ + + = + + + + +  (12) 

In this case, the real part (10) gives 
2 2 3 5 2 2( ) [ (2 ) ] ( ) ( ) 0.xx xt x xxaP bP b a P c P P PP P Pκω ω κ λ β κ δ α β λ γ+ + − − + + − − − + − + =  (13) 
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Its bright one-soliton solution is [6]: 
( )( , ) sec h[ ( )] i x tq x t A B x vt e κ ω θ− + += −  (14) 

where the width of the soliton is given by 

( )2

2

(1 )
,

(1 )

b b a
B

a b b

κ κω ω κ

κ ω

− − −
= −

+ −
 (15) 

the pulse amplitude is 

( )
{ }

2

2

(1 ) (3 )
,

(1 )

b b a
A

a b b

κ κω ω κ λ β γ

δ κ ω

− − − + +
= −

+ −
 (16) 

and the corresponding wave number is: 
2 2 4 4 2 2 22 3 2

1 2 1 21 2
4 4

(1 ) [ (1 ) 2 (4 (1 ) )]4 (1 ) (1 ) (1 ) . 
4 4

b Z b b Z b Z a b Zab b b Z b b Z
b b

κ κ δ κδ κ κ κω
δ δ

− − + − − −+ − − − −
= +  (17) 

Here we have introduced the notations: 

1 (3 )(2 )Z λ β γ λ β= + + +  (18) 

{ }2
2 (3 ) (2 ) .Z cλ β γ λ β κ= + + + −  (19) 

This is possible with the restrictions 

( ){ }2 2(1 ) (1 ) 0,b b a a b bκ κω ω κ κ ω− − − + − <  (20) 

{ }2 4 4 2 2 2
1 2 1 2(1 ) 2 4 (1 ) 0Z b b Z b Z a b Zκ δ κ− + − − − >  (21) 

and 

0.bδ ≠  (22) 

3.1. Conservation Laws 

Equation (13) restated is given by 
2

3 3 2 3 2 5 2 2 2 2

( )

2 0.
xx xt

x x xx xx

F u u aP bP Pb P Pa

P c P P P PP PP P P P P

κω ω κ

κ λ κ β δ α β λ γ

= − − − + + −

− − + + + + + + =
 (23) 

For a conserved flow ( , )x tT T  for which  0x t
x tD T D T+ =  on the solutions of (23), we employ the 

multiplier approach in which 
2 3 3 2

3 2 5 2 2 2 2

( ) [ ( , , , , )( 2

)]
x t xx xt

x x xx x x

F u u E Q x t P P P a P b P Pb P Pa P c P

P P P P P P P P P P

κω ω κ κ λ

κ β δ α β λ γ

= − − − + + − − +

+ + + + + +
 (24) 

vanishes, where E  is the Euler operator. Each multiplier Q  leads to a conserved flow. We list below the 
special cases of the parameters that lead to a multiplier Q  and the corresponding conserved density tT  and 
flux xT : 

( )2
1

6 2 2 4 2 4 2 4 2 2 2 4
1

2 2 2 2 2

(i). , :

1/ 4 ,

[ 1/ 6 1/ 2 1/ 4 1/ 4 1/ 4 1/ 2 1/ 4

1/ 4 1/ 2 1/ 2 1/ 4 1/ 2 1/ 2 ];

= + − =

= −

= − − + − + − + +

+ + − + + −

x

t
x xx

x
x x

t x x xt

Q P

T b P P P

T P P P P P P P P P c

PP b P a P a P b P P bk P

β λ γ α

δ γ κ λ κ γ κ α λ

κ κ ω ω
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6 4 2 4 2 4 2 3 3 2 2 4
2

2 2 2 2 2 2

2 2 3
2

(ii). , :

1/ 6 1/ 4 1/ 4 1/ 4 1/ 4 1/ 4 1/ 4 1/ 4

1/ 4 1/ 4 1/ 4 1/ 2 1/ 2 1/ 2 1/ 2

[ 1/ 4 1/ 4 1/ 4 1/ 4

= + − =
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= − − − + +
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λ γ λ 3 21/ 4
1/ 2 1/ 4 1/ 2 ]
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1/ 4 1/ 2 1/ 2 1/ 2
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3 3 6

= − = − = +
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− + − +
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+ + −

t x

t
t x x xx

xt

x
t x x

xt

aQ P P
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2 2 2 2 2

8 6 2 2 4 2 6 6 2
4

(iv). 2 , , :

1/ 6 1/8 1/ 2 1/ 4 3/8 1/ 4

1/ 4 1/ 4 1/ 2 1/ 4 1/ 4 1/ 2 1/ 2
1 [3 4 12 4 8 4

24

= − = − − = + +

= − + − − − −

− − − − − + +

= − − + + −

t x x

t
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The conserved quantities are now given by:  

( ){ } ( )
2

2 2
1 1 d d d ,

4 2 3
t

x xx x
b b b A BI T x P P P x P x

∞ ∞ ∞

−∞ −∞ −∞
= = − = =∫ ∫ ∫  (25) 

( ) ( ){ }
2

4 2 2 2 2
2 2 d 8 15 2 45 ,

45
t AI T x A A c a b

B
δ κ γ κ α κ ω ω κ

∞

−∞
= = + − − + + −∫  (26) 

( ) ( ){ }
2

4 2 2 2 2
3 3 2d 8 15 2 45 ,

45
t AI T x I A A c a b

B
δ κ γ κ α κ ω ω κ

∞

−∞
= = = + − − + + −∫  (27) 

and 

( ) ( ){ }
2

4 2 2 2 2
4 4 3 2d 8 15 2 45 .

45
t AI T x I I A A c a b

B
δ κ γ κ α κ ω ω κ

∞

−∞
= = = = + − − + + −∫  (28) 

4. POWER LAW NONLINEARITY 

For power law nonlinearity the functional F  generalizes to [6]  
,( ) nF u u=  (29) 

where n  represents the power law nonlinearity parameter and gives the strength of nonlinearity. For pulse 
stability, the restriction is 0 <  < 2,n and in particular 2≠n  for self-focusing singularity to disappear. Now, 
Eq. (1) is rewritten as 

( )22 2 2 42 .n
t xx xt xxxx x x xx xxi q a q bq c q q q q q q q q q q q q qσ α β γ λ δ∗ ∗+ + + = + + + + +  (30) 

The real part equation is 
2 2 3 5 2 1 2 2( ) (2 ) ( ) ( ) 0,n

xx xt x xxa P b P b a P P P cP PP P Pκω ω κ λ β κ δ α β λ γ++ + − − + − − + − + − + =  (31) 
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and its bright soliton solution is [6] 
1

( )( , ) sech [ ( )] − + += − i x tnq x t A B x vt e κ ω θ  (32) 

with the condition 
0.δ =  (33) 

The width of the soliton is 
2
2

B n λ βκ
λ β
−

=
+

 (34) 

for 
2 24 .λ β>  (35) 

The soliton speed is 

2 2 2

2 [ 2 (1 )] ,
(1 2 ) 2 (1 )

a bv
b b b

κ β α κ
β κ λ κ κ

− + −
=

⎡ ⎤− + − +⎣ ⎦
 (36) 

while the wave number is 
[ ]2

2 2 2

(1 )( 2 ) (1 )( 2 )
,

(1 2 ) 2 (1 )
a b b

b b b
κ κ β λ κ β λ

ω
β κ λ κ κ

− + − + − +
=

⎡ ⎤− + − +⎣ ⎦
 (37) 

provided 
2 2 2(1 2 ) 2 (1 ) 0.b b bβ κ λ κ κ⎡ ⎤− + − + ≠⎣ ⎦  (38) 

The amplitude of the pulse is given as 
1

2 2 2 2 2

2 2 2

( 1)( 2 ) 4 (1 ) 2 [(1 ) ]
.

( 2 ) (1 2 ) 2 [ ) ]
 

(1
{ }
{ }

na n b b b b
A

c b b b
κ β λ β κ λ κ λ κ κ

β λ β κ λ κ κ

⎡ ⎤+ − + − + − +
= −⎢ ⎥

+ − + − +⎢ ⎥⎣ ⎦
 (39) 

4.1. Conservation Laws 

The conserved density of (31) for α β λ γ= − + +  is given by 

( )2 .
4

t
x xx

bT P P P= − +   

The conserved flow xT is a cumbersome function. 
Thus, the conserved quantity is given by  

( ){ } ( )
2

2 2

1 1
2d d d ,

1 14 2 2 ( 2)
2

t
x xx x

b b bA B nI T x P P P x P x
n n

n

∞ ∞ ∞

−∞ −∞ −∞

⎛ ⎞ ⎛ ⎞Γ Γ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= = − = =

+ ⎛ ⎞Γ +⎜ ⎟
⎝ ⎠

∫ ∫ ∫  (40) 

where ( )xΓ  is the Euler's gamma function. 

5. CONCLUSION 

The multiplier approach was employed to derive the conservation laws of the LPD model in optical 
waveguides. Both Kerr and power law nonlinearities were considered. While for the case of Kerr law 
nonlinearity essentially two conserved quantities were obtained, the power law case provides one. All of 
these laws appear with a certain constraints imposed on the parameters of the model. The soliton solutions 
are utilized to generate the conserved quantity from the corresponding density. The results of this paper are 
very encouraging to further studies with this generic model. Later, the LPD model will be extended to 
birefringent fibers, DWDM systems, optical metamaterials, optical couplers, and other relevant physical 
settings. The conservation laws in such situations will be available and reported. 
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