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Abstract. In this paper an application of a non-equilibrium thermodynamic theory developed in previous papers

for porous media filled by a fluid flow is given. A problem of propagation of coupled porosity and temperature

waves is explored in a special case. For perfect isotropic media and in the one dimensional case the dispersion

relation is worked out and three modes of propagation are derived. The diagrams of the wave propagation

speeds as functions of the wave number are represented. The carried out results have applications in several

fields of science, as seismic waves, biology, medical sciences, nanotechnology and geology.
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1. INTRODUCTION

In previous articles [1,2] the propagation of coupled porosity-fluid concentration waves and porosity-fluid
concentration flux-temperature waves was studied, using a non-equilibrium thermodynamic model (see [3–7])
for porous media satured by a fluid flow, formulated following the standard methods of the non-equilibrium
thermodynamics with internal variables (see [8–10]). In this contribution we apply this theory to a problem of
coupled porosity-temperature waves in perfect isotropic porous media in the one dimensional case. In Section
2 we present the equations of the thermodynamical model used to describe the behaviour of an anisotropic
porous medium filled by a fluid flow. In Section 3 we specialize the transport equation for the temperature
field and the rate equations for the porosity field and its flux (see [4] and [3]) in a special case. In Section 4
we treat the perfect isotropic case. In Section 5, assuming that the medium occupies the whole space, in the
one-dimesional case, we derive the dispersion relation and the velocities of the three modes of propagation of
coupled porosity-temperature plane harmonic waves. We represent the diagrams of these speeds as functions
of the wave number. The worked out results can be applied in several technological sectors as medical sci-
ences, biology, geology and nanotechnology. In the nanostructures the volume element size L along a direction
is comparable or smaller than the free mean path l of the heat carriers, the phonons, i.e. l

L ≥ 1, the rate of
variation of their properties is faster than the time scale of the relaxation times of the fluxes to their values of
equilibrium and situations of propagation of high-frequency waves are present. In [11] a thermodynamic theory
for erosion and/or deposition in elastic porous media was developed by the authors.
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2. GOVERNING EQUATIONS

In the following we use the standard Cartesian tensor notation in rectangular coordinate systems and
we refer to a current configuration Kt at the time t. We consider a theory for porous media filled by a fluid
flow, formulated in [3–6] in the framework of rational extended thermodynamics, where we have assumed
that there are present the elastic field described by the symmetric stress tensor τi j and the small-strain tensor
εi j; the thermal field described by the temperature T , its gradient T,i and the heat flux qi; the field of the
fluid concentration c, its gradient c,i and its flux jc

i ; the porosity field, whose geometric description is given by a
structural permeability tensor ri j à la Kubik (see [1,5]); its gradient ri j,k and its flux Vi jk, because the thin porous
channels sometimes can self propagate because of some surrounding favorable conditions. Thus, we choose the
following thermodynamic state vector: C = {εi j,c,T,ri j, jc

i ,qi,c,i,T,i,ri j,k,Vi jk}, where εi j =
1
2(ui, j + u j,i),

with ui the displacement field.
We suppose that the porous skeleton and the fluid, flowing inside it, constitute two-components mixture,

ρ1 being the fluid mass density and ρ2 the density of the elastic porous skeleton, so that we have ρ = ρ1 +ρ2,
with ρ the density of the mixture as a whole. In the following we suppose the mass density ρ is constant.

We consider the continuity equation (see [4, 9])

ρ ċ+ jc
i,i = 0, (1)

where the source term is neglected, a superimposed dot indicates the material derivative (i.e. d
dt =

∂

∂ t + xγ
∂

∂xγ
),

a comma in lower indices indicates the spatial derivation, Einstein convention for repeated indices is used. In
(1) the concentration of the fluid is defined by c = ρ1

ρ
and its flux jc

i is given by jc
i = ρ1(v1i− vi), where v1i is

the fluid velocity and vi the barycentric velocity of the mixture, defined by ρvi = ρ1v1i +ρ2v2i, v2i being the
velocity of the porous skeleton.

In [4] the rate equations for ri j and the fluxes jc
i , qi and Vi jk, obeying the objectivity and frame indifference

principles [12], were obtained in the form

ṙi j +Vi jk,k = β
1
i jklεkl +β

2
i jklrkl +β

3
i jk jc

k +β
4
i jkqk +β

5
i jklmVklm +β

6
i jkc,k +β

7
i jkT,k +β

8
i jklmrkl,m, (2)

τ
qq̇i = χ

1
i j jc

j−qi +χ
3
i jklV jkl +χ

4
i jc, j−χ

5
i jT, j +χ

6
i jklr jk,l, (3)

τ
jc

j̇c
i =− jc

i +ξ
2
i jq j +ξ

3
i jklV jkl−ξ

4
i jc, j +ξ

5
i jT, j +ξ

6
i jklr jk,l, (4)

V̇i jk = γ
1
i jkl jc

l + γ
2
i jklql + γ

3
i jklmnVlmn + γ

4
i jklc,l + γ

5
i jklT,l + γ

6
i jklmnrlm,n, (5)

where the phenomenological tensors of different order βββ
s (s = 1,2, . . . ,8), χχχm (m = 1,3,4,5,6), ξξξ

n (n =
2,3,4,5,6) and γγγq (q = 1,2, . . . ,6) are assumed constant. Furthermore, in (3) τq is the relaxation time of the
heat flux qi and in (4) τ jc

is the relaxation time of the fluid concentration flux jc
i . In [4] (see also [3]) the con-

stitutive equations were worked out to close the system of balance equations for the media under consideration,
and in [3] the generalized telegraph temperature equation was derived in the form

τ
qT̈ + Ṫ =−γi j(τ

q
ε̈i j + ε̇i j)+ϕ(τqc̈+ ċ)+ηi j(τ

qr̈i j + ṙi j)+Ki jT, ji−ν
1
i j jc

j,i−ν
3
i jklV jkl,i−ν

4
i jc, ji−ν

6
i jklr jk,li,

(6)
where Ki j is the thermal diffusivity tensor and the other phenomenological coefficients γγγ , ϕ , ηηη , ννν p (p =
1,3,4,6) are supposed constant. Equations (2)–(6) describe disturbances, having finite velocity of propagation
and own relaxation time to reach the respective thermodynamic equilibrium values, and show that the porous
channels influence mechanical, thermal and other properties of the media taken into account. Equations (2), (5)
and (6) describe the evolution of the porosity field, of its flux and of the temperature field, and in their right hand
sides the source terms represent the contributions of the fields occurring inside these media. Equations (3) and
(4) are the anisotropic generalized Maxwell-Vernotte-Cattaneo equation for the heat flux and the anisotropic
Fick-Nonnenmacher equation for the fluid concentration flux, respectively (see [4] and [3]).
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3. EVOLUTION EQUATIONS FOR THE POROSITY, ITS FLUX AND TEMPERATURE FIELDS IN
A SPECIAL CASE

Let us consider the system of equations (2), (5) and (6). We assume the following:
– the porous medium into consideration is at rest,
– in equation (2) the influence of the small deformations field εi j and the porosity field ri j can be disregarded,
– in the rate equation (5) the contribution of the fluid concentration gradient c,k, the fluid concentration
flux jc

i and the heat flux qi can be neglected,
– in equation (6) the influence of the first and second partial time derivative of the small deformations
field εi j, of the concentration field c and of the porosity field ri j, the gradient of the fluid concentration
flux, jc

j,i, the gradient of the porosity field flux, Vi jk,i, and the gradient of c, j, can be disregarded.
Thus, we have

∂ ri j

∂ t
+Vi jk,k = β

3
i jk jc

k +β
4
i jkqk +β

5
i jklmVklm +β

6
i jkc,k +β

7
i jkT,k +β

8
i jklmrkl,m, (7)

∂Vi jk

∂ t
= γ

3
i jklmnVlmn + γ

5
i jklT,l + γ

6
i jklmnrlm,n, (8)

τ
q ∂ 2T

∂ t2 +
∂T
∂ t

= Ki jT, ji−ν
6
i jklr jk,li. (9)

In the rate equation (7), because of the symmetry of ri j, ri j = r ji, the phenomenological coefficients βββ
s (s =

3 . . . ,8) have the following symmetries

β
p
i jk = β

p
jik (p = 3,4,6,7), β

5
i jklm = β

5
jiklm, β

8
i jklm = β

8
jiklm = β

8
i jlkm = β

8
jilkm. (10)

From (7), the symmetry property of ri j and (10), the divergence of the porosity field flux Vi jk,k is symmetric in
the indexes {i, j}, i. e. Vi jk,k = V jik,k. Also, in equations (8) and (9) we have for the phenomenological tensors
γ6

i jklmn, Ki j and ν6
i jkl the following symmetries

γ
6
i jklmn = γ

6
i jkmln, ν

6
i jkl = ν

6
ik jl = ν

6
l jki = ν

6
lk ji, Ki j = K ji. (11)

The symmetry relations (10) and (11) reduce the number of the significant components of the considered phe-
nomenological tensors in equations (7)–(9). The number of these significant components has a further reduction
if we establish some other assumptions. Furthermore, we introduce the deviator tensor, r̃i j, and the scalar (or
spherical) part, rδi j, of ri j in the following way

ri j = r̃i j + rδi j, r̃i j = ri j− rδi j, r̃kk = 0, r =
1
3

rkk, (i, j,k = 1,2,3) , (12)

(ri j being symmetric also r̃i j is symmetric) and we decompose Vi jk in its following three symmetric contribu-
tions Vi jk = Vkδi j +Viδ jk +V jδik. For the sake of simplicity in the following we consider for the porosity field
only its scalar (spherical) part and for its flux only its first contribution, i.e.

ri j = rδi j, Vi jk = Vkδi j. (13)

Thus, by virtue of assumptions (13), the rate equations (7)–(9) keep the form

∂ r
∂ t

δi j +Vk,kδi j = β
3
i jk jc

k +β
4
i jkqk +β

5
i jklmVmδkl +β

6
i jkc,k +β

7
i jkT,k +β

8
i jklmr,mδkl, (14)

∂Vk

∂ t
δi j = γ

3
i jklmnVnδlm + γ

5
i jklT,l + γ

6
i jklmnr,nδlm, (15)

τ
q ∂ 2T

∂ t2 +
∂T
∂ t

= Ki jT, ji−ν
6
i jklr,liδ jk. (16)
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From (15) the following symmetries are valid

γ
5
i jkl = γ

5
jikl, γ

3
i jklmn = γ

3
jiklmn = γ

3
i jkmln = γ

3
jikmln, γ

6
i jklmn = γ

6
jiklmn = γ

6
i jkmln = γ

6
jikmln. (17)

The properties (17)1–(17)3 come from the symmetry of rδi j and Vkδi j in the indexes {i, j} and from the sym-
metry of Vnδlm and r,nδlm in the indexes {l,m}.

4. SYSTEM OF EQUATIONS DESCRIBING THE PROPAGATION
OF COUPLED POROSITY-TEMPERATURE WAVES IN PERFECT ISOTROPIC MEDIA

The number of the significant Cartesian components of the phenomenological tensors present in (14)–
(16) have a further reduction in the special case of perfect isotropic media, when their geometric, transport
and thermal properties are invariant respect to all rotations and inversions of the frame axes (under orthogonal
transformations). In this case we have [13]:
the tensors of odd order vanish, i.e.

Li jk = 0, Li jklm = 0, thus β
3
i jk = β

4
i jk = β

5
i jklm = β

6
i jk = β

7
i jk = β

8
i jklm = 0; (18)

the second order tensors keep the form

Li j = Lδi j, thus Ki j = K δi j; (19)

the fourth order tensors must have the form

Li jkl = L1δi jδkl +L2δikδ jl +L3δilδ jk, (20)

where Lr (r = 1,2,3) are the 3 significant components of Li jkl, so that in equations (15) and (16) γ5
i jkl and

ν6
i jkl have only three independent components. But, when fourth order perfect isotropic tensors have special

symmetry properties (as γ5
i jkl and ν6

i jkl) in [1] it was seen that these tensors can be expressed only by two
significant independent components. In particular, when a perfect isotropic tensor Li jkl has the symmetry

Li jkl = L jikl, (21)

(valid for the tensor γ5
i jkl present in (8)) from relation (20) we have (see [1])

Li jkl = A1δi jδkl +A2(δikδ jl +δilδ jk), with A1 = L1, A2 = (L2 +L3)/2, so that (22)

γ
5
i jkl = γ

5
1 δi jδkl + γ

5
2 (δikδ jl +δilδ jk). (23)

Also, the perfect isotropic tensor ν6
i jkl , present in (16), keeps the form (see [1])

ν
6
i jkl = ν

6
1 δilδ jk +ν

6
2 (δi jδkl +δikδ jl) by virtue of its symmetries (see (11)2). (24)

The sixth order tensors Li jklmn (see γ3
jikmln and γ6

i jklmn present in (15)) assume the following form [13]

Li jklmn = L1δi jδklδmn +L2δi jδkmδln +L3δi jδknδlm +L4δikδ jlδmn +L5δikδ jmδln

+L6δikδ jnδlm +L7δilδ jkδmn +L8δilδ jmδkn +L9δilδ jnδkm +L10δimδ jkδln

+L11δimδ jlδkn +L12δimδ jnδkl +L13δinδ jkδlm +L14δinδ jlδkm +L15δinδ jmδkl,

(25)

where Lr (r = 1,2, . . . ,15) are the 15 significant components of Li jklmn. But, when a sixth order perfect isotropic
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tensor Li jklmn has the two symmetries

Li jklmn = L jiklmn, Li jklmn = Li jkmln, equivalent to Li jklmn = L jiklmn = Li jkmln = L jikmln, (26)

(valid for the tensors γ3
i jklmn and γ6

i jklmn in equation (8)), in [1] it was shown that the significant independent
components of this tensor reduce from 15 to 6, i. e.

Li jklmn = D1(δklδmn +δkmδln)δi j +D2δi jδknδlm +D3[(δikδ jl +δilδ jk)δmn +(δikδ jm +δimδ jk)δln]+

D4(δikδ jn +δinδ jk)δlm +D5(δilδ jm +δimδ jl)δkn +D6[(δilδ jn +δinδ jl)δkm +(δimδ jn +δinδ jm)δkl], (27)

with D1 = L1 = L2; D2 = L3; D3 = L4 = L5 = L7 = L10; D4 = L6 = L13; D5 = L8 = L11; D6 = L9 = L12 = L14 = L15. (28)

Taking into account (11), (17), (18), (19), (23), (24) and (27), we derive from (14)–(16) the following simplified
system of equations governing the evolution of the porosity, its flux, temperature fields. In particular, from (14),
using relations (18), when i = j we obtain

∂ r
∂ t

+Vk,k = 0, (29)

from (15), using the special forms (23) and (27), assumed by the fourth order tensor γ5
i jkl and the sixth order

tensors γr
i jklmn (r = 3,6), we have

δi j
∂Vk

∂ t
= {γ3

1 (δklδmn +δkmδln)δi j + γ
3
2 δi jδknδlm + γ

3
3 [(δikδ jl +δilδ jk)δmn +(δikδ jm +δimδ jk)δln]

+ γ
3
4 (δikδ jn +δinδ jk)δlm + γ

3
5 (δilδ jm +δimδ jl)δkn + γ

3
6 [(δilδ jn +δinδ jl)δkm

+(δimδ jn +δinδ jm)δkl]}Vnδlm +[γ5
1 δi jδkl + γ

5
2 (δikδ jl +δilδ jk)]T,l

+{γ6
1 (δklδmn +δkmδln)δi j + γ

6
2 δi jδknδlm + γ

6
3 [(δikδ jl +δilδ jk)δmn +(δikδ jm +δimδ jk)δln]

+ γ
6
4 (δikδ jn +δinδ jk)δlm + γ

6
5 (δilδ jm +δimδ jl)δkn + γ

6
6 [(δilδ jn +δinδ jl)δkm

+(δimδ jn +δinδ jm)δkl]}r,nδlm,

(30)

where γ3
s and γ6

s (s = 1, . . .6) are the 6 independent significant components of the tensors γ3
i jklmn and γ6

i jklmn,
respectively, and γ5

1 , γ5
2 are the 2 independent significant components of the tensor γ5

i jkl .
Thus, from (30) we get

δi j
∂Vk

∂ t
=
[(

2γ
3
1 +3γ

3
3 +2γ

3
5
)
Vk +

(
2γ

6
1 +3γ

6
3 +2γ

6
5
)

r,k + γ
5
1 T,k
]

δi j +

[(
3γ

3
2 +2γ

3
4 +2γ

3
6
)
V j +

(
3γ

6
2 +2γ

6
4 +2γ

6
6

)
r, j + γ

5
2 T, j
]

δik +
[(

3γ
3
2 +2γ

3
4 +2γ

3
6
)
Vi +

(
3γ

6
2 +2γ

6
4 +2γ

6
6

)
r,i + γ

5
2 T,i
]

δ jk.

(31)
When i = j we have

∂Vk

∂ t
=
(
2γ

3
1 +6γ

3
2 +3γ

3
3 +4γ

3
4 +2γ

3
5 +4γ

3
6
)
Vk +

(
γ

5
1 +2γ

5
2

)
T,k +

(
2γ

6
1 +6γ

6
2 +3γ

6
3 +4γ

6
4 +2γ

6
5 +4γ

6
6

)
r,k, i.e. (32)

τ
ν ∂Vk

∂ t
=−Vk−Dνr,k +βνT,k, (33)

where we have defined

2γ
3
1 +6γ

3
2 +3γ

3
3 +4γ

3
4 +2γ

3
5 +4γ

3
6 =−(τν)

−1 ; βν = τ
ν

(
γ

5
1 +2γ

5
2

)
; Dν =−τ

ν

(
2γ

6
1 +6γ

6
2 +3γ

6
3 +4γ

6
4 +2γ

6
5 +4γ

6
6

)
,

(34)
τν being the relaxation time of the field Vk, Dν a diffusion coefficient and βν a coefficient describing the
influence of the temperature gradient on the time partial derivative of the field Vk. From equation (16), using
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the special forms (19)2 and (24) of the tensors Ki j and ν6
i jkl , respectively, we derive

τ
q ∂ 2T

∂ t2 +
∂T
∂ t

= K T,ii−
[
ν

6
1 δilδ jk +ν

6
2 (δi jδkl +δikδ jl)

]
r,liδ jk, (35)

where ν6
1 , ν6

2 are the 2 significant independent components of the fourth order tensor ν6
i jkl and K is the only

one significant component of the second order tensor Ki j. Therefore, equation (35) keeps the form

τ
q ∂ 2T

∂ t2 +
∂T
∂ t
−K T,ii +αT r,ii = 0, with αT = 3ν

6
1 +2ν

6
2 a coupling coefficient. (36)

From equation (29), its time partial derivative and the divergence of equation (33) we have

τ
ν ∂ 2r

∂ t2 +
∂ r
∂ t
−Dνr,ii +βνT,ii = 0. (37)

5. PROPAGATION OF THE COUPLED POROSITY-TEMPERATURE
PLANE HARMONIC WAVES

The aim of this Section is to study the propagation of the coupled waves of porosity and temperature
fields and therefore to find the dispersion relation for the propagation velocities of these waves as functions of
the wave number and to represent these speeds in diagrams. We confine our considerations to one-dimensional
plane harmonic waves propagating along the x direction and we suppose that the porous medium under consid-
eration occupies the whole space. Thus, we assume that the solutions of the set of equations (36) and (37) have
the form

r(x, t) = r̂eik(x−vt), T (x, t) = T̂ eik(x−vt), (38)

with r̂ and T̂ the amplitudes of the waves r(x, t) and T (x, t), k the wave number, v the wave velocity, defined by
v = ω

k [ms−1], with ω the angular frequency, ω = 2π f [s−1], f being the wave frequency and k = 2π

λ
[m−1], with

λ the wave length. Thus, using the relations (38) and their derivatives into (36), (37) we obtain the following
system of equations (

K k− τ
qkv2− iv

)
T̂ −αT kr̂ = 0, (39)

βνk2T̂ +
(
τ

νk2v2−Dνk2 + ikv
)

r̂ = 0, (40)

that has non-trivial solutions only if its determinant vanishes, i.e.

D =

∣∣∣∣∣K k− τqkv2− iv −αT k

βνk2 τνk2v2−Dνk2 + ikv

∣∣∣∣∣= 0. (41)

Developing D we obtain the following dispersion relation for the wave propagation velocities v

τ
q
τ

νk2v4 + ik (τq + τ
ν)v3−

[
(K τ

ν +Dντ
q)k2 +1

]
v2− ik (K +Dν)v+ k2 (K Dν −αT βν) = 0. (42)

From the imaginary part of the dispersion relation (42), we derive

k (τq + τ
ν)v3− k (K +Dν)v = 0, (43)

from which we obtain the following two values

v(1) = 0, v(2) =

√
K +Dν

τq + τν
, being

K +Dν

τq + τν
> 0. (44)
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From (44)2 the wave propagation velocity v(2) is always real.

Fig. 1 – Representation of the wave propagation speed v(2) as function of k.

Fig. 2 – Representation of the wave propagation speed v(3) as function of k. The fuchsia horizontal line is its horizontal asymptote.

Fig. 3 – Representation of the wave propagation speed v(4) as function of k.

From the real part of the dispersion relation (42), we obtain

τ
q
τ

νk2v4−
[
(K τ

ν +Dντ
q)k2 +1

]
v2 + k2 (K Dν −αT βν) = 0, (45)

from which we have two possible modes

v(3) =

√
H1 +

√
H 2

1 −H2, v(4) =

√
H1−

√
H 2

1 −H2, (46)

where H1 =
K τν +Dντq

2τqτν
+

1
2τqτνk2 (with H1 > 0), H2 =

K Dν −αT βν

τqτν
. (47)
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The velocity v(3) is real when H 2
1 −H2 ≥ 0, namely when[

(K τ
ν −Dντ

q)
2
+4τ

q
τ

ν
αT βν

]
k4 +2(K τ

ν +Dντ
q)k2 +1≥ 0, (48)

that is always true because sum of positive quantities, and then also the velocity v(3) is always real. From (46)2
the velocity v(4) is real when

H1−
√

H 2
1 −H2 ≥ 0, (49)

from which we obtain
H2 ≥ 0, i.e. K Dν ≥ αT βν . (50)

Therefore, in the assumption that (50)1 (or (50)2) holds v(4) is real. In Figs. 1–3 the propagation speeds as
functions of k are represented for a given numerical set of the several coefficients present in the equations
of the developed model: K = 10−2 m2 s−1, Dν = 10−1 m2 s−1, τq = 10−2 s, τν = 10−3 s, βν = 10−3 s−1 and
αT = 10−2 m4 s−1. In this assumption the condition (50)2 is satisfied and then the velocity v(2) is real.

The results presented in Figs. 1–3 show that for increasing values of k (for decreasing wave lengths λ )
the propagation velocity v(2) remains constant, the propagation velocity v(3) decreases, while the propagation
velocity v(4) increases.
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