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1. INTRODUCTION

The celebrated theorem of Korovkin gives us conditions for uniform approximation of continuous func-
tions on a compact interval via sequences of positive linear operators, see [7], [8]. More precisely, if (Tn)n∈N
is a sequence of positive linear operators that map C ([0,1]) into itself such that the sequence (Tn( f ))n∈N con-
verges to f uniformly on [0,1] for each of the test functions ek (x) = xk, where k = 0,1,2, then this sequence
also converges to f uniformly on [0,1] for every f ∈C([0,1]). An immediate consequence of it is the fact that

lim
n→∞

n
∫ 1

0
xn f (x)dx = f (1) (1)

for every continuous function f : [0,1]→ R, which means the weak convergence of the sequence nxndx of
measures to the Dirac measure δ1, see [8, Exercise 1, page 54]. As the weak convergence of measures is one
of the most important tools in partial differential equations, probability theory, applied and theoretic statistics
etc, see [3], it is natural to investigate the extension of Korovkin’s limit (1) to the case of functions of several
variables. An inspection of Korovkin’s argument easily yields the following generalization for several variables:

THEOREM 1. (The extension of Korovkin’s theorem for several variables) Suppose that X is a compact
subset of the Euclidean space Rk and let (Tn)n∈N be a sequence of linear and positive operators from C(X) into
itself such that

lim
n→∞

Tn( f ) = f uniformly on X (2)

for each of the test functions 1, pr1, ..., prk and
k
∑

i=1
pr2

i . Then

lim
n→∞

Tn( f ) = f uniformly on X (3)

for all functions f ∈C(X).

The family of test functions used here is built via the canonical projections on the Euclidean k-dimensional
space pri(x1, ...,xk) = xi, i = 1, ..., k.

For details and various generalizations see Altomare [1], Bucur and Păltineanu [4], Gal and Niculescu [5],
[6] and Niculescu [9]. In this paper, we prove some possible extensions of the limit (1) to the double integrals
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on a triangle, see Theorem 2 and Proposition 3. We establish then a general result regarding the asymptotic
evaluation for functions differentiable at (1,0), see Theorem 3 and as a consequence, we obtain the asymptotic
evaluation for functions differentiable at (1,0) in the case of two concrete situations, Theorems 4 and 5. We
define ∆ =

{
(x,y) ∈ [0,1]2 | x+ y≤ 1

}
and denote as usual C (∆) = { f : ∆→ R | f is continuous} which is a

real linear space and for f ∈C (∆) we define ‖ f‖= sup
(x,y)∈∆

| f (x,y)|. By 1 we denote the constant function equal

with 1. In the proof of the asymptotic evaluations we need the concept of differentiability at the point (1,0)∈ ∆.
Since (1,0) is not an interior point of ∆ this concept needs an explanation. Precisely it refers to differentiability
at a point which is the vertex of a non-degenerate cone.

Definition 1. A function f : ∆→ R is called differentiable at (1,0) if and only if there exist A, B ∈ R
such that

lim
(x,y)→(1,0),(x,y)∈∆

f (x,y)− f (1,0)−A(x−1)−By
|x−1|+ |y|

= lim
(x,y)→(1,0),(x,y)∈∆

f (x,y)− f (1,0)−A(x−1)−By
1− x+ y

= 0.

Let us note that if f : ∆→R is differentiable at (1,0) then: ∀ε > 0, ∃δε > 0 such that ∀(x,y)∈∆−{(1,0)}
with |x−1|+ |y|< δε we have | f (x,y)− f (1,0)−A(x−1)−By|

|x−1|+|y| < ε , or equivalent, ∀(x,y) ∈ ∆ with |x−1|+ |y|< δε we
have

| f (x,y)− f (1,0)−A(x−1)−By| ≤ ε (|x−1|+ |y|) .

For y = 0 we get, | f (x,0)− f (1,0)−A(x−1)| ≤ ε |x−1|, ∀|x−1| < δε , that is, A = lim
x→1,x<1

f (x,0)− f (1,0)
x−1 =

∂ f
∂x (1,0). For x = 1− y we get | f (1− y,y)− f (1,0)+Ay−By| ≤ 2ε |y|, ∀|y| < δε

2 . Hence there exists the
directional derivative of f at (1,0) along the line l: x+ y = 1, that is,

∂ f
∂ l

(1,0) := lim
y→0,y>0

f (1− y,y)− f (1,0)
y

and ∂ f
∂ l (1,0) = B−A, thus B = ∂ f

∂x (1,0)+
∂ f
∂ l (1,0).

All notation and notions used and not defined in this paper are standard, see [4].

2. THE CONVERGENCE

THEOREM 2. Let f : ∆→ R be a continuous function. Then

lim
n→∞

n2
∫∫

∆

xn (1− y)n f (x,y)dxdy =
f (1,0)

2
.

Proof. Let Ln :C (∆)→R be the sequence of functionals defined by Ln ( f )= n2 ∫∫
∆

xn (1− y)n f (x,y)dxdy.
By calculations we get Ln (1) = n2

2(n+1)2 , Ln (pr1) =
n2

(n+2)(2n+3) , Ln
(

pr2
1
)
= n2

2(n+3)(n+2) , Ln (pr2) =
n2

2(n+1)2(2n+3)
,

Ln
(

pr2
2
)
= n2

2(n+1)2(n+2)(2n+3)
. We deduce that lim

n→∞
Ln ( f ) = f (1,0)

2 , ∀ f ∈
{

1, pr1, pr2, pr2
1 + pr2

2
}

. According to

Theorem 1 one can conclude that lim
n→∞

Ln ( f ) = f (1,0)
2 for all f ∈C (∆).

3. A GENERAL ASYMPTOTIC EVALUATION

The aim of the present paper is to provide an asymptotic evaluation for the convergence established in
Theorem 2. This is done in the context of functions differentiable at (1,0) and makes the objective of Theorem
4 below. For this we prove the following general result.
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THEOREM 3. Let Kn : ∆→ [0,∞) be a sequence of continuous functions and Ln :C (∆)→R the functional
defined by

Ln ( f ) =
∫∫

∆

Kn (x,y) f (x,y)dxdy.

Suppose that there exists n0 ∈ N such that for all n ≥ n0 we have
∫∫

∆
Kn (x,y)((1− x)+ y)dxdy > 0. Then the

following assertions are equivalent:
(i)

lim
n→∞

∫∫
∆
((1− x)+ y)2 Kn (x,y)dxdy∫∫

∆
((1− x)+ y)Kn (x,y)dxdy

= 0.

(ii) For every f ∈C (∆) differentiable at (1,0) we have

lim
n→∞

Ln ( f )− f (1,0)λn +
∂ f
∂x (1,0)αn−

(
∂ f
∂x (1,0)+

∂ f
∂ l (1,0)

)
βn

αn +βn
= 0

where λn =
∫∫

∆
Kn (x,y)dxdy, αn =

∫∫
∆
(1− x)Kn (x,y)dxdy, βn =

∫∫
∆

yKn (x,y)dxdy.

Proof. (i)⇒(ii). Since f is differentiable at (1,0), lim
(x,y)→(1,0),(x,y)∈∆

g(x,y)
|x−1|+|y| = 0, where g : ∆→R, g(x,y)=

f (x,y)− f (1,0)−A(x−1)−By, see the Definition 1. Let ε > 0. Then there exists δε > 0 such that ∀(x,y)∈ ∆

with |x−1|+ |y|< δε we have |g(x,y)| ≤ ε

2 (|x−1|+ |y|). We prove that ∀(x,y) ∈ ∆ we have

|g(x,y)| ≤ ε

2
(|x−1|+ |y|)+ηε (|x−1|+ y)2 . (4)

where ηε =
‖g‖
δ 2

ε

. This argument has its origins in the Korovkin’s proof of his theorem, see [8, page 13], or [10,
Lemma 1]. Indeed, let (x,y) ∈ ∆. We can have the situations: a) |x−1|+ |y| < δε . In this case |g(x,y)| ≤
ε

2 (|x−1|+ |y|) ≤ ε

2 (|x−1|+ |y|)+ ‖g‖
δ 2

ε

(|x−1|+ |y|)2. b) |x−1|+ |y| ≥ δε . In this case 1 ≤ (|x−1|+|y|)2

δ 2
ε

and
then

|g(x,y)| ≤ ‖g‖ ≤ ‖g‖ (|x−1|+ |y|)2

δ 2
ε

≤ ε

2
(|x−1|+ |y|)+ ‖g‖

δ 2
ε

(|x−1|+ |y|)2 .

Let n≥ n0. From (4) multiplying with Kn (x,y)≥ 0 and then, by integration we get

|Ln ( f )− f (1,0)λn +Aαn−Bβn| ≤∫∫
∆

|Kn (x,y) f (x,y)− f (1,0)Kn (x,y)+A(1− x)Kn (x,y)−ByKn (x,y)|dxdy

≤ ε

2

∫∫
∆

Kn (x,y)((1− x)+ y)dxdy+ηε

∫∫
∆

Kn (x,y)((1− x)+ y)2 dxdy.

Thus ∣∣∣∣Ln ( f )− f (1,0)λn +Aαn−Bβn

αn +βn

∣∣∣∣≤ ε

2
+ηε

∫∫
∆

Kn (x,y)((1− x)+ y)2 dxdy∫∫
∆

Kn (x,y)((1− x)+ y)dxdy
.

By (i) there exists nε ≥ n0 such that ∀n ≥ nε we have
∫∫

∆
Kn(x,y)((1−x)+y)2dxdy∫∫

∆
Kn(x,y)((1−x)+y)dxdy < ε

2(ηε+1) and hence ∀n ≥ nε we

have
∣∣∣Ln( f )− f (1,0)λn+Aαn−Bβn

αn+βn

∣∣∣ < ε . Thus (ii) is proved. (ii)⇒(i). It follows from (ii) applied for the function

f : ∆→ R, f (x,y) = ((1− x)+ y)2; ∂ f
∂x (1,0) = 0, ∂ f

∂ l (1,0) = 0.

Nothing
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4. SOME EXAMPLES

We need latter the following calculations.

PROPOSITION 1. The following formulas hold true:∫∫
∆

xn(1− y)n(1− x)dxdy =
3n+4

2(n+1)2(n+2)(2n+3)
;

∫∫
∆

xn(1− y)nydxdy =
1

2(n+1)2(2n+3)
;

∫∫
∆

xn(1− y)n(1− x)2dxdy =
7n+9

2(n+1)2(n+2)(n+3)(2n+3)
;

∫∫
∆

xn(1− y)n(1− x)ydxdy =
1

2(n+1)2(n+2)2 ;

∫∫
∆

xn(1− y)ny2dxdy =
1

2(n+1)2(n+2)(2n+3)
.

Proof. We will use the well-known equality∫∫
∆

f (x,y)dxdy =
∫ 1

0
dx
∫ 1−x

0
f (x,y)dy (5)

for continuous functions f : ∆→R, see [2, page 247]. For more details regarding the multiple Riemann integral
we recommend the reader the excellent treatment of this concept in the book of Boboc, see [2]. The first two
equalities follows by direct calculations from the relation (5) and we omit it. For the last equalities we will use
the equality (5) and integration by parts. We have∫∫

∆

xn (1− y)n (1− x)2 dxdy =
1

n+1

∫ 1

0
xn (1− xn+1)(1− x)2 dx

=
1

(n+1)2

∫ 1

0

(
xn+1− x2n+2

2

)′
(1− x)2 dx =

2

(n+1)2

∫ 1

0

(
xn+1− x2n+2

2

)
(1− x)dx

=
2

(n+1)2

∫ 1

0

(
xn+2

n+2
− x2n+3

2(2n+3)

)′
(1− x)dx =

2

(n+1)2

∫ 1

0

(
xn+2

n+2
− x2n+3

2(2n+3)

)
dx

=
2

(n+1)2

(
1

(n+2)(n+3)
− 1

4(n+2)(2n+3)

)
=

7n+9

2(n+1)2 (n+2)(n+3)(2n+3)
.

We have ∫∫
∆

xn (1− y)n (1− x)ydxdy =
∫∫

∆

xn (1− x)(1− y)n dxdy−
∫∫

∆

xn (1− x)(1− y)n+1 dxdy

=
1

n+1

∫ 1

0

(
xn− xn+1)(1− xn+1)dx− 1

n+2

∫ 1

0

(
xn− xn+1)(1− xn+2)dx.

Integrating by parts

1
n+1

∫ 1

0

(
xn− xn+1)(1− xn+1)dx =

1
n+1

∫ 1

0

(
xn+1

n+1
− xn+2

n+2

)′ (
1− xn+1)dx

=
∫ 1

0

(
xn+1

n+1
− xn+2

n+2

)
xndx =

1

2(n+1)2 −
1

(n+2)(2n+3)
=

3n+4

2(n+1)2 (n+2)(2n+3)
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and similar

1
n+2

∫ 1

0

(
xn− xn+1)(1− xn+2)dx =

1
n+2

∫ 1

0

(
xn+1

n+1
− xn+2

n+2

)′ (
1− xn+2)dx

=
∫ 1

0

(
xn+1

n+1
− xn+2

n+2

)
xn+1dx =

1
(n+1)(2n+3)

− 1

2(n+2)2 =
3n+5

2(n+1)(n+2)2 (2n+3)
.

It follows that
∫∫

∆
xn (1− y)n (1− x)ydxdy = 1

2(n+1)2(n+2)2 . We have also

∫∫
∆

xn (1− y)n y2dxdy =
∫∫

∆

xn
(
(1− y)n+2−2(1− y)n+1 +(1− y)n

)
dxdy

=
∫ 1

0
xn

(
1− xn+3

n+3
−

2
(
1− xn+2

)
n+2

+
1− xn+1

n+1

)
dx =

1

2(n+1)2 (n+2)(2n+3)
.

We are now in the position to prove the asymptotic evaluation of the sequence from Theorem 2.

THEOREM 4. Let Ln : C (∆)→ R be the functional defined by

Ln ( f ) = n2
∫∫

∆

xn (1− y)n f (x,y)dxdy.

Then for every f ∈C (∆) differentiable at (1,0) we have

lim
n→∞

n
[

Ln ( f )− f (1,0)
2

]
=− f (1,0)− 1

2
∂ f
∂x

(1,0)+
1
4

∂ f
∂ l

(1,0) .

Proof. Let Kn (x,y)= n2xn (1− y)n. From Proposition 1 we deduce lim
n→∞

n2 ∫∫
∆

Kn (x,y)((1− x)+ y)2 dxdy=

3 and lim
n→∞

n
∫∫

∆
Kn (x,y)((1− x)+ y)dxdy = 1. The condition (i) in Theorem 3 is satisfied and hence for every

f ∈C (∆) differentiable at (1,0) we have

lim
n→∞

Ln ( f )− f (1,0)λn +
∂ f
∂x (1,0)αn−

(
∂ f
∂x (1,0)+

∂ f
∂ l (1,0)

)
βn

αn +βn
= 0.

Since lim
n→∞

nαn =
3
4 , lim

n→∞
nβn =

1
4 we get

lim
n→∞

n [Ln ( f )− f (1,0)λn] =−
3
4

∂ f
∂x

(1,0)+
1
4

(
∂ f
∂x

(1,0)+
∂ f
∂ l

(1,0)
)
=−1

2
∂ f
∂x

(1,0)+
1
4

∂ f
∂ l

(1,0) .

Also λn = n2 ∫∫
∆

xn (1− y)n dxdy = n2

2(n+1)2 , lim
n→∞

n
(
λn− 1

2

)
=−1. Then passing to the limit in the equality

n
[

Ln ( f )− f (1,0)
2

]
= n [Ln ( f )− f (1,0)λn]+ f (1,0)n

(
λn−

1
2

)
we get the limit from the statement.

We remark the asymetric form of the asymptotic evaluation in Theorem 4. Our next objective is to give a
new example of the sequences of the operators as those from Theorems 2 and 4. We need the folowing result.
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PROPOSITION 2. Let (xn)n≥1 be a sequence of the real numbers and α > 1 such that lim
n→∞

nαxn = b ∈R.

Then lim
n→∞

nα−1 (xn + · · ·+ x2n−1) =
(2α−1−1)b
2α−1(α−1) .

Proof. Let ε > 0. There exists nε ∈ N such that ∀n≥ nε we have |nαxn−b|< ε , or
∣∣xn− b

nα

∣∣< ε

nα . Let

n≥ nε . For every k = 0, ...,n−1 we have n+ k ≥ nε and hence
∣∣∣xn+k− b

(n+k)α

∣∣∣< ε

(n+k)α . We deduce that∣∣∣∣∣n−1

∑
k=0

xn+k−b
n−1

∑
k=0

1
(n+ k)α

∣∣∣∣∣≤ n−1

∑
k=0

∣∣∣∣xn+k−
b

(n+ k)α

∣∣∣∣< ε

n−1

∑
k=0

1
(n+ k)α

or

∣∣∣∣∣∣
n−1
∑

k=0
xn+k

n−1
∑

k=0

1
(n+k)α

−b

∣∣∣∣∣∣ < ε . It follows that lim
n→∞

n−1
∑

k=0
xn+k

n−1
∑

k=0

1
(n+k)α

= b, or, lim
n→∞

nα−1
n−1
∑

k=0
xn+k

1
n

n−1
∑

k=0

1

(1+ k
n)

α

= b. Since lim
n→∞

1
n

n−1
∑

k=0

1
(1+ k

n)
α =

∫ 1
0

dx
(x+1)α = 2α−1−1

2α−1(α−1) we get the limit from the statement.

PROPOSITION 3. Let f : ∆→ R be a continuous function. Then

lim
n→∞

n
∫∫

∆

xn (1− y)n

(
n−1

∑
k=0

xk (1− y)k

)
f (x,y)dxdy =

f (1,0)
4

.

Proof. It follows from Theorem 2 and Proposition 2 (α = 2).

THEOREM 5. Let An : C (∆)→ R be the functional defined by

An ( f ) = n
∫∫

∆

xn (1− y)n

(
n−1

∑
k=0

xk (1− y)k

)
f (x,y)dxdy.

Then for every f ∈C (∆) differentiable at (1,0) we have

lim
n→∞

n
[

An ( f )− f (1,0)
4

]
=−3 f (1,0)

16
− 3

16
∂ f
∂x

(1,0)+
3
32

∂ f
∂ l

(1,0) .

Proof. Let Vn : C (∆)→ R be defined by Vn ( f ) =
∫∫

∆
xn (1− y)n f (x,y)dxdy. Let f ∈ C (∆) be differ-

entiable at (1,0). From Theorem 4, lim
n→∞

n
[
n2Vn ( f )−a

]
= b with a = f (1,0)

2 , b = − f (1,0)− 1
2

∂ f
∂x (1,0) +

1
4

∂ f
∂ l (1,0). If, for every n ∈ N we define Rn = n2Vn ( f )− a− b

n then, n2Vn ( f ) = a+ b
n +Rn and lim

n→∞
nRn = 0.

From Vn ( f ) = a
n2 +

b
n3 +

Rn
n2 , by summation we get

2n−1
∑

k=n
Vk ( f ) = a

2n−1
∑

k=n

1
k2 +b

2n−1
∑

k=n

1
k3 +En, En =

2n−1
∑

k=n
rk, where

rn =
Rn
n2 . Since lim

n→∞
n3rn = lim

n→∞
nRn = 0 from Proposition 2, lim

n→∞
n2En = 0, that is En = o

( 1
n2

)
. Hence

2n−1

∑
k=n

Vk ( f ) = a
2n−1

∑
k=n

1
k2 +b

2n−1

∑
k=n

1
k3 +o

(
1
n2

)
.

Since
2n−1
∑

k=n

1
k3 =

1
n3

n−1
∑

k=0

1

(1+ k
n)

3 =
1
n2 tn and lim

n→∞
tn =

∫ 1
0

dx
(x+1)3 =

3
8 we have

2n−1
∑

k=n

1
k3 =

3
8n2 +o

( 1
n2

)
. Let us note the

equality
2n−1
∑

k=n

1
k2 = 1

n2

n−1
∑

k=0

1

(1+ k
n)

2 = 1
n sn, where sn = 1

n

n−1
∑

k=0

1

(1+ k
n)

2 . As is well-known, for functions ϕ ∈ C1 the

following evaluation holds 1
n

n−1
∑

k=0
ϕ
( k

n

)
=
∫ 1

0 ϕ (x)dx− ϕ(1)−ϕ(0)
2n +o

(1
n

)
, which for ϕ (x) = 1

(x+1)2 , gives us that
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sn =
1
2 +

3
8n + o

(1
n

)
and hence

2n−1
∑

k=n

1
k2 = 1

2n +
3

8n2 + o
( 1

n2

)
. We get

2n−1
∑

k=n
Vk ( f ) = a

2n +
(3a

8 + 3b
8

) 1
n2 + o

( 1
n2

)
, or

n
2n−1
∑

k=n
Vk ( f ) = a

2 +
(3a

8 + 3b
8

) 1
n +o

(1
n

)
. Since An ( f ) = n

2n−1
∑

k=n
Vk ( f ) the limit from the statement follows.
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