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Abstract. The expression for absorption cross-section of massless as well as massive charged 

particles in the background of dilaton-axion black hole is determined in low and high frequency 

limits. The modification of the absorption cross-section in comparison to Reissner-Nordstrom black 

hole is discussed.  
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1. INTRODUCTION 

The study of black holes both from theoretical as well as observational point of view has emerged as a 

very challenging area in the context of modern astronomy and theoretical physics [1, 2]. The recent 

developments on experimental work in the context of Sgr.A* and M87 predict the existence of the super-

massive black holes [3, 4]. The LIGO scientific collaboration reported a characteristic ‘chirp’ of gravitational 

waves from merger [5, 6] of binary black holes systems, providing a strong evidence of the existence of 

black holes. The Event Horizon team having radio-telescope of resolving power three orders of magnitude 

stronger than Hubble telescope seeks to observe black hole shadow [3, 7]. They have produced very recently 

first images of supermassive black holes M87 [5, 8, 9] at the center of galaxy. The nature of Sgr. A* is still 

unknown due to strong interstellar scattering which occurs at cm wavelength. Recent works on scattering and 

absorption of particles and waves in the black-holes background space-time have also revealed the relevance 

of experimental observations. In this context, the absorption of massive or massless scalar field, fermions, 

electromagnetic and gravitational wave in the Schwarzschild space-time has been studied [10–13]. In the 

background of Reissner-Nordstrom, rotating and regular black hole space-time, considerable amount of 

works exist in the literature [14–23]. The particle emission by black holes has also been extensively explored 

in the literature [24, 25]. The study of particle emission rate as well as Hawking radiation has become more 

significant in this regard. Besides that the absorption of matter fields by black holes has also took very 

important role in elucidating accretion phenomena in galactic nuclei [26–28]. The black hole absorption 

phenomena also revealed the fact that the high frequency limit absorption cross-section has correlation with 

black hole shadows. 

We here thus try to analyse the features of absorption cross-section for a monochromatic planar wave 

of massive charged scalar particles as well as massless particles in the background of dilaton-axion black 

holes in low frequency as well as high frequency limit [29]. We also compare our results with Reissner-

Nordstrom black holes and draw our conclusion regarding two kinds of black holes. 

Our study is due to the fact that the presence of dilaton field drastically changes the distinct features 

which are different from other black holes. Moreover, such black holes are interesting to study because the 

dynamical modulus or dilaton fields coupled to string curvature may dominate the fate of dark energy 

dominated universe [30]. The energy density of dilaton field may influence our accelerating universe [31]. 

Apart from the dilaton scalar, the other scalar which appears in string inspired gravity models has 

implications to overcome the enigma of dark matter [32, 33]. 
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2. THE MODEL 

The action describing dilaton-axion black hole can be expressed as [29], 

4 21 1 1
 

2 2 2

a aS d x g R e e F F   −  
  

  
= − −   −    −   

   
 , (1) 

where R  is the scalar curvature, 8 G =   be the gravitational constant in four dimension, 2F F F
=  

represents Maxwell field, F  ,   and   are the (Hodge) dual Maxwell field strength, massless scalar 

dilaton and the massless pseudo-scalar axion respectively. a and b represent the coupling of dilaton and 

axion field with electromagnetic field. We begin with the spherically symmetric metric, 

2 2 2 2 21
d ( )d d ( ) dΩ

( )
s U r t r p r

U r
= − + + . (2) 

Using the action described by equation (1), two cases have been discussed [29]. Considering b a , 1b  

and 1a =  the following metric has been derived, 

( )( )
2 2

0

( )  
r r r r

U r
r r

+ − − −
=  

− 
, (3) 

with 

( )2 2 2
0( )p r r r= − . (4) 

r+  and r−  are the two horizons and 0r  is the dilaton-axion charge. 0r  and r  are related to electric charge eQ , 

magnetic charge ,mQ  dilaton field at infinity 0  and black hole mass M  as
( ) 02 2

0  ,
2

e mQ Q e
r

M

−
−

=  and 

( ) 02 2 2 2
0 e mr M M r Q Q e

−
 =  + − +  [29]. 

3. LOW FREQUENCY REGIME 

In the background of dilaton-axion black hole for ,b a  we consider a charged massive perturbing 

scalar field. The dynamics of the scalar field can be described by the Klein-Gordon equation as follows, 

( )( ) 2
1 Φ 0iqA iqA m  


  −  − − =
 

, (5) 

where q  and 1m  are the charge and mass of the scalar field. The components of the vector potential 0A  and 

3A  can be derived from 01F  and 23  F respectively, where 

0

0( )

eQ
A

r r
=

+
 (6) 

and 

3 cosmA Q= −  . (7) 

For determining the black hole absorption cross-section, we need incoming modes from null infinity. 

The incoming modes are basically the solutions of the radial wave equation which includes only the vector 

potential 0A  since 3A  component will appear in the angular part of the wave equation. 
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Now introducing the ansatz )Φ ( ) ,(i t
lme R r Y− =    and decomposing it, one can get the radial and 

angular part of the wave equation both of which will be of confluent Heun type [34]. The radial wave 

equation can be revealed as, 

1

d d
0

d d

R
U R

r r

 
  + = 

 
 (8) 

where  , 1 and m are the conserved energy, spherical harmonic index and azimuthal harmonic index 

respectively. In our case, from equation (3), (4), (6) and (7), we have ( )( )r r r r+ − = − −  and 

( )
22 2 2

2 2 20
1 0 12

0

( )
( ) ( 1)

( )
e

r r r
U r qQ r r m l l

r rr

 −
=  − − − + + 

+ 
. (9) 

Using the coordinate transformation 
2d

d

r r

r

 =


 and changing the radial function as ( )R rR r= , the radial 

equation (8) can be explored as, 

( ) ( ) ( )
2 2

12 4 2 2

d d d
( ) ( ) ( ) 0

d dd
rR r rR r U rR r

r rr r r r

   
+ + = 

 
, (10) 

where 

1
1 4 3 2

d

d

U
U

rr r r

  
= −  

 
. (11) 

By further simplification from equations (9) and (10), we get, 

( ) ( )12 2

d d
0

d d
rR U Rr

r r r r

  
+ = 

 
 (12) 

Finally, from equation (12), the radial equation becomes, 

2

12

d
0

d

R
U R

r
+ = , (13) 

where the domain of r  is ( ),− +  . 1U  and R  of equation (13) are the corresponding expressions for 1U  

and R  which are represented in new coordinate transformation. 

Introducing a new radial function 

1

2Ψ R=   in (8), the wave equation can be expressed as, 

( )
2

2

2

d Ψ
Ψ 0 

d
V

r
+  − =  (14) 

where the effective potential V  is 

2 2
12

1 1
( )  

4
V U r r+ −

 
=  − + −   

. (15) 

In this work, we make use of a dimensionless parameter v  corresponding to the scalar-field as, 

2
1

2
1

m
 = −


 (16) 
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where   commensurates to the ratio of speed of propagation of the wave in the far region to the speed of 

light. For unbound modes of the scalar field 0 1     implies 1  m  . 

From equation (16) we have, 

( )2 2 2
1 1m =  −  . (17) 

Being 1m  , in low frequency region, 1M  and thus 1 1M m . Through 2
1m  from equation (17), we 

can relate  , 1U  and V . 

For ,r r+→  we have from equation (11), 

2 22
20

1 2
0

lim 1
( )

e

r r

r qQ
U

r rr+→
++

   
= − − =    

+  
. (18) 

Thus, the transmitted part of the radial wave equation (8) has solution as, 

trans
i r

R A e − 
=  (19) 

where transA  is a constant. The coordinate r  is represented as, 

2

)l ( 0(n )
( )

r
r r r r

r r

+
 + 

+ −

 − +
−

, (20) 

where (0)r  is a constant. 

However, we want to derive the dilaton-axion black hole absorption cross-section in low frequency 

region considering a massive charged scalar field as a perturbing field. As we know for unbound scalar 

modes, 0 1    implies 1m  . In low frequency limit as 1,  we also have 1 1m . On the other hand, 

for massive charged scalar field 2  is modified by 

2

0

eqQ

r r+

 
− 

+ 
 in 1U . For 0eqQ   and   0 , an 

incoming wave will exist and super-radiance will occur. Thus, the term 
0

1
( )

eqQ

r r+

 
− 

+ 
 suggests that the 

super-radiance will be absent in this case. It implies 
0

1
( )

eqQ

r r+ +
 in low frequency limit. 

In such frequency limit, one can match the behavior of Schrodinger wave function across the broad 

regions of black hole spacetime very accurately. Following [14], three different regions has been disposed: 

the region very close to the black hole horizon region, i.e. r r+  (region 1), an intermediate region in which 

scalar field mass and frequency terms are much smaller than 1; i.e. 0→ , 1 0m →  and 
0

0
( )

eqQ

r r+ +
 

(region 2), and a region which is far away from the black-hole horizon, i.e. ,r r+  (region 3). This is due to 

the fact that in low frequency limit, wave-length of the scalar field is much larger than any black hole 

characteristics scale. 

For region 1 ( )r r+→ . After substituting the dominating term of the expressions of r  for region 1 for 

r r+→ , the solution of equation (8) using equations (18), (19) and (20) can be unveiled as, 

2 2
0

2
0

1 1 ln( )
( ) ( )

e
I I

qQ r r
R A i r r

r r r rr

+
+

+ + −+

   
= − − − −    + −   

 (21) 

where IA  is a constant. 
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Now we find the solution in region 2. To find the solution in region 2, we take the limit 0→  as well 

as 1 0m →  in equation (8). To compute the absorption cross-section in the limit M , 1 1Mm , we want to 

concentrate on the dominating mode 1 0= . 

Now the differential equation for this region can be exhibited as, 

2

2

( 2 )d d
0

( )( ) dd

r r rR R

r r r r rr

+ −

+ −

 + −
− = 

− − 
. (22) 

Thus, the solution of equation (22) is 

1 1ln( ) ln( )  IIR r r r r+ −=  − −  − +  . (23) 

Moreover, the equation (23) in the limit r r+→  can be represented as, 

1 1ln( ) ln( )IIR r r r r+ + −=  − −  − +  , (24) 

where 1  and   are constants to be determined. 

Here we are seeking an overlapping in region 1 and 2. Thus, comparing the equations (21) and (24) we 

get 

2
0

1 2
0

1
( )

e
I

qQ r
A i

r r r+ +

  
 = −  − −  
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, (25) 

where 
2

( )

r

r r

+

+ −

 =
−

 and 

2
0

2
0

1 1  
( )

e
I

qQ r
A i

r r r+ +

   
 = − − −    

+    

, (26) 

where 

ln( )r r+ − =  − . (27) 

We now restrict ourselves in finding the solutions of region 3. For region 3 ( ) ,r r+  the differential 

equation (8) using equations (14) and (15) can be disposed as, 

( )
12 22

2 2 1 2
12 2

2 (2 )d ( 1)
  0

d

M m l l
m R

rr r

   − +
+  − + −  =   
  

. (28) 

In this equation, we neglect the terms 
2

1
O

r

 
 
 

 that are proportional to 2 2 2 2
1 0 1,  , m r m  and terms of order 

3

1

r
. 

In the asymptotic limit for 1r  and 1 0,=  the solution of equation (28) can be manifested as, 

1
1  III

b
R a

r
= +


 (29) 

where 
2

2

(1 )
1

(1 )

m

m

e−  +
−

 −  +  
  =
  

. In the asymptotic limit, the equation (24) can be expressed as, 

1

( )
II

r r
R

r

+ −−
= − +  . (30) 

Comparing the equations (25), (26), (29) and (30), the expressions of 1a  and 1b  can be conveyed as, 
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2
0

2
0

1

1 1
( )

e
I

qQ r
A i

r r r
a

+ +

   
− − −    

+    
=


 

(31) 

and 

( )
2

0
1 2

0

1e
I

qQ r
b A r r i

r r r
 + −

+ +

  
= −  − −  

+  
. (32) 

On the other hand, the amplitudes for the incident and reflected waves can be exposed as, 

1 1

2

inc a ib
A

i

− + 
=  
 

 (33) 

and 

1 1

2

ref a ib
A

i

+ 
=  
 

. (34) 

Thus, substituting 1a  and 1, b the expressions for the amplitudes of incident and reflected waves for dilaton-

axion black hole can be explored from equations (31), (32), (33) and (34) as follows, 

( )
2 2

2 0 0

2 2
0 0

1 1 1
( ) ( )

2

e e
I

inc
dilaton axion

qQ r qQ r
A r r i

r r r rr r
A

i

+ −

+ ++ +

−

       
+   −  − − −  − −       

+ +        
=


 

(35) 

and 

( )
2 2

20 0

2 2
0 0

1 1 1
( ) ( )

2

e e

ref
dilaton axion

qQ r qQ r
i r r

r r r rr r
A

i

+ −

+ ++ +

−

       
− − −  −   − − −       

+ +        
=


 

(36) 

However, from the expressions of inc
dilaton axionA −  and ref

dilaton axionA −  (using equations (35) and (36)), we can derive 

the expression of absorption cross-section for 1 0=  as, 

( )

( )

2
2 0

2
0

2 2 2 2
2 2

2 0 0

2 2
0 0

4 1
( )

1 1 1

e

abs dilaton axion

e e

qQ r
r r

r r r

qQ r qQ r
r r

r r r rr r

+ −

+ +

−

+ −

+ ++ +

  
  −  − −  

+   
 =

            
 +   − − − + − −             + +           

 (37) 

In the low frequency limit, using equation (37) for 1   and taking the approximation 0  , the expression 

for absorption cross-section will reduce to the form (substituting   and β from equation (27)), 

22
0

2
0

4
1

( )

e
abs dilaton axion

r qQr

r rr

+
−

++

  
 = − −  

 +  
. (38) 

For uncharged scalar particle, the above expression (equation (38)) can be represented as, 

2
2 0

2
4 1

abs dilaton axion

r
r

r
+−

+

 
 =  − 

 
. (39) 
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Thus, comparing with the result for Reissner-Nordstrom black hole, 

24
abs RN

r+ =   (40) 

the expression corresponding to 
abs dilaton axion−

  expressed by equation (39), has been modified by the term 

2
0

2
1 . 

r

r+

 
− 

 
In Fig. 1a, abs  has been depicted for dilaton-axion black hole as well as Reissner-Nordstrom 

black hole using equation (40) for 0.5mQ =  and 0mQ =  respectively. 

 

Fig. 1a –  eQ −  curve for Reissner-Nordstrom and Dilaton-

axion black hole. Green line and Blue line correspond to 0mQ =  

and 0.5mQ =  respectively. 

 

Fig. 1b –  −  curve. Red, Blue and Green line corresponds to 

1 10.04,  0.4Mm Mm= =  and 1 0.2Mm =  respectively. 

 

It is explored in Fig. 1a that the curve corresponding to 0mQ =  falls faster than 0.5mQ =  curve. 

Moreover, as observed in Fig. 1b, local maxima appears for 1 0.04Mm =  and black-hole charge to mass 

ratio, 1 0.4q =  for monopole ( )1 0=  mode. 

 

 

Fig. 2a – −  curve for Reissner-Nordstrom black hole  

(Blue line) and Dilaton-axion black hole (Red line) for 0.6Q = . 

 

Fig. 2b – −  curve for Dilaton-axion  

black hole for 1Q = . 

 

However, in Fig. 2a, absorption cross-section being negative, super-radiance phenomena occurs also 

for dilaton-axion black holes for ( ) 02 2 2
0  0.6e mQ Q Q e r

−
= + − = . It is exhibited in Fig. 2b that the absorption 

cross-section becomes more negative with the increase of the charge of the black holes. This phenomena is 

similar to Kerr-Newmann black holes [35]. 
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4. HIGH FREQUENCY REGIME 

In high frequency limit, the wavelenght of the scalar field turns out to be small in accordance with the 

horizon radius of the black hole. Thus, a wavefront can be generated along the geodesics of the black hole 

spacetime under eikonal approximation. The expression corresponding to the geometrical capture cross-

section geo  can be explored as 
2 ,geo cb =   where cb  represents the critical impact parameter of the 

unbound geodesic approaching unstable circular orbit at critical radius   cr r= . 

Using geodesic motion and considering leading order correction, the geometrical  absorption cross-

section for dilaton-axion black hole can be exhibited as, 

( )0

0

2
2

2 2 2 2 2
0 0

2 2 2 2 2 2
0) ( )

3 9 6( ) 2 4

8 3 ( 2

e m

geo

e m e m

M M Q Q e r r

M Q Q e Q Q r

−

−

 
+ − + − − 

 
 = 

 − + + − 

. 
(41) 

For 0 0r = , 0 0 =  and 0mQ = , the equation (41) will reduce to the expression of Reissner-Nordstrom black-

hole [36] and for 0 0r = , 0 0 = , 0mQ =  and 0,eQ =  it will correspond to Schwarzschild black hole. 

 

 

Fig. 3 – geo eQ −  curve for Reissner-Nordstrom black hole and 

Dilaton-axion black hole. Purple line and Blue line  

correspond to 0mQ =  and 0.09mQ =  respectively. 

 

Fig. 4 – osc
abs −   curve for Dilaton-axion black hole. Blue line 

and Red line correspond to 1 0.3q =  and 1 1q =  respectively. 

 

Using geometrical optics approximation, it is shown in Fig. 3, geo  vs eQ  curve for Reissner-

Nordstrom black hole as well as dilaton-axion black hole taking 0mQ =  and 0.09mQ =  respectively. Here 

also the curve representing Reissner-Nordstrom black hole falls faster than dilaton-axion black hole. 

At high energies, black hole absorption cross-section oscillates around a limiting constant value known 

as the capture cross-section or geometrical cross-section of the photon sphere [37–39]. It should be 

mentioned that photon sphere is a hyper-surface on which a massless particle can round the black hole under 

unstable circular null geodesics. Using the results for higher dimensional case, we have derived the 

expression of high energy oscillatory absorption cross-section for dilaton-axion black holes as, 

8 Sinc  2
( )

cosc c
abs c geo

c

r
e

U r

−
  

 = −      
    

 (42) 

where cr  is the radius of the unstable circular null-geodesics. The expressions of the parameter c  and cr  

can be expressed as, 

21
4 ( ) 2 ( )

2
c c c cU r r U r = −  (43) 
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and 

( )23( ) 9( ) 32

4
c

r r r r r r
r

+ − + − + −+ + + −
= . (44) 

The curves using equations (42), (43) and (44) corresponding to    osc
abs  are shown for dilaton-axion black 

holes for different values of charge to mass ratio 1q  in Fig. 4. However, the Fig. 4 depicts the fact that in 

dilaton-axion black hole case the absorption cross-section decreases as the charge to mass ratio 1q  increases. 

This behavior is similar to Reissner-Nordstrom black hole as observed in [38]. Thus, it is also in concordance 

with the observation. 

5. CONCLUSION 

We study here the absorption cross-section of dilaton-axion black hole under charged massive scalar 

field as well as massless scalar field perturbations both in low frequency and high frequency limit 

considerations. It is observed that the presence of 
2

0

2
1

r

r+

 
− 

 
 modifies the absorption cross-section of dilaton-

axion black hole in comparison to Reissner-Nordstrom black hole in low frequency limit. We further notice 

that abs  exhibits super-radiance effect which increases with the increase of the charge of the black holes. 

The increment of the value of either electric charge as well as magnetic charge decreases the absorption 

cross-section. Moreover, in geometrical optics approximation, we have acquired the expression of the 

absorption cross-section and also manifested that in absence of axion charge the absorption cross-section will 

reduce to the expression for Reissner-Nordstrom black hole. Thus, it is observed that in low frequency limit 

as well as in geometrical optics approximation, the curve corresponding to Reissner-Nordstrom black hole 

falls faster than dilaton-axion black hole. We have also revealed the oscillations of the absorption cross-

section  of dilaton-axion black holes which agree with the observations made in [39]. 
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