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Abstract. This paper describes an analytical design technique in the frequency domain for a 

particular class of two-dimensional zero-phase anisotropic filters, namely with an elliptical or circular 

frequency response. These filters may be low-pass, if their response contains the origin of the 

frequency plane, or band-pass. The elliptical filters are specified by their orientation angle and the 

lengths of its axes. Their synthesis begins from a Gaussian low-pass prototype with a given 

selectivity, its frequency response being a ratio of two factored, even order polynomials. A specific 

frequency transformation is next determined, which is applied to the 1D prototype, leading to the 

desired 2D elliptically-shaped filter. The frequency response of the obtained filter results in a 

factored, matrix form and it explicitly contains the imposed specifications. Thus the filter is 

parametric, it can be adjusted or tuned for various specifications, without the need to resume every 

time from the start the design procedure. The filters designed through this analytical method are 

accurate in shape and efficient, of relatively low order, and their frequency response results in a 

factored form, convenient for implementation. Some relevant examples of design using the proposed 

method and also some filtering tasks on various test images are provided, to show their capabilities in 

image processing applications. 
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1. INTRODUCTION 

Two-dimensional filters have constantly developed as an essential research field, due to their important 

applications in digital image processing, and various design techniques emerged [1]. As an alternative to the 

well-known optimization methods based on numerical algorithms, generally leading to optimal filters for 

imposed specifications, there have been elaborated also analytical design methods with major advantages, 

such as a closed form of the filter frequency response and the tunability, or the possibility to adjust filter 

characteristics through their parameters. These analytic techniques rely on 1D prototypes, to which specific 

frequency transformations are applied, depending on the desired 2D filter. A convenient and largely used 

tool for 2D filter design is also the McClellan transform [2, 3]. There exist a large variety of 2D filters with 

various shapes, both of FIR and IIR type which find specific applications in image processing. A particular 

class are elliptically-shaped filters, approached in earlier and more recent papers such as [4–9]. They found 

useful applications in iris recognition [8], fingerprint enhancement [9] etc. Some elliptical filters have also 

Gaussian [5] or Gabor [9] characteristics. Filters with circular frequency response have also been developed 

[10, 11] and are also widely used. Efficient design of anisotropic Gaussian filters is achieved in [12, 13]. The 

author has also approached analytical design of some types of 2D elliptically-shaped filters in previous 

works [14–16]. Separable Gaussian directional FIR filters were approached in [17], while directional and 

square filters are described in [18]. Another class of zero-phase directional filters designed analytically is 

approached in [19]. Anisotropic filters are very useful due to their directional response. 

This work proposes an analytical design method for parametric elliptical or circular 2D filters, with a 

Gaussian shape. The resulted filters are adjustable through specified parameters, controlling the selectivity 

and the peak frequency for band-pass filters. The design process starts from a 1D Gaussian prototype filter 
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with factored transfer function, to which a specific frequency mapping is applied, yielding the desired 2D 

filter frequency response, either elliptical or circular, which results directly factored, this being an important 

advantage in implementation. Several design examples as well as image filtering applications are provided. 

2. GAUSSIAN PROTOTYPE FILTERS 

Zero-phase filters, in particular Gaussian filters are often used in image processing because they have 
the useful feature to yield filtered images free of any phase distortions. We begin our design with the 1D 
Gaussian prototype filter function in the frequency domain: 

( )2 2( ) exp 2 .G  = −   (1) 

For simplicity, instead of (1), we use the expression ( )2 2( ) expPG p = −  , with 2p =  , where p  has 

the role of a selectivity parameter; the larger the value of p, the narrower will be the Gaussian. The design 

procedure presented next relies on a polynomial approximation of the 1D Gaussian prototype ( )2 2exp p−  . 

One of the most efficient rational approximations (with best tradeoff between accuracy and order) is given 
by Chebyshev-Padé method, which yields a uniform approximation of a function over a specified range. Its 
single drawback is that its coefficients can only be derived numerically, using a symbolic calculation 
software like MAPLE. Since we need a parametric (adjustable) 2D filter with specified parameters, we first 

obtain a rational approximation of Gaussian 2
0 ( ) exp( )G  = − , taking 1p = . The following approximation 

results, accurate on a frequency range much larger than  ,−  , this being essential for our purpose: 

( ) ( )4 2 4 2
0 84.2752( ) 0.01617 5 0.466737 1.36271718.618 .G     −   ++ +  (2) 

The derived approximation (2) is scalable of the frequency axis, i.e. substituting the current variable  by 
p   ( 0p  ), the approximation remains valid for a certain range of the scaling parameter p. For a value of 

the parameter p different from unity, the characteristic 0 ( )G   either stretches (for 1p  ) or shrinks (for 

1p  ). Thus the 1D Gaussian filter becomes parametric depending on p. Therefore, approximation (2) can 

be written for the parametric Gaussian ( )2 2( ) expPG p = −  , where 0.01617 = : 

( )
( )

( )

4 4 2 2

2 2

4 4 2 2

84.27525

0.466

18.618 ( )
( ) exp .

(7 )37 1.362717

P
P

P

p p P
G p

Qp p

 −   
 = −     =  

 + 

+

+
 (3) 

In the design it would be useful to find the value of the scaling parameter p which corresponds to a specified 

filter bandwidth. As in the case of common filters, we impose a desired cut-off frequency (−3dB bandwidth) 

c  and we obtain the value of p  to be imposed: 

( )2 2( ) exp 1 2       ln 2 0.5887 .P c c c cG p p = −  =  =     (4) 

The Gaussian approximation ( )PG   is plotted in Fig. 1a for various values of scaling parameter p. Starting 

from (3), a band-pass (BP) Gaussian filter results by summing two Gaussians shifted to 0−  and 0 : 

( ) ( )2 2 2 2
0 0( ) exp ( ) exp ( ) ,BPG p p = −   − + −   +   (5) 

where 0  is the peak frequency of the BP filter. Its frequency response, using (3), can be written as: 

0 0 0 0 0 0

0 0 0 0

( ) ( ) ( ) ( ) ( ) ( )
( ) .

( ) ( ) ( ) ( )

P P P P P P
BP

P P P P

P P P Q P Q
G

Q Q Q Q

 −  +  −   +  +  +   −
 =   +   =  

 −  +  −   + 
 (6) 

Substituting now the shifted numerator 0( )PP   and denominator 0( )PQ   from (3) into expression 

(6), after performing the calculations, finally the frequency response ( )BPG   of the Gaussian BP filter 

results as the ratio of the following two parametric even polynomials of degree 8, written in descending 

powers of the frequency variable  as: 
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( ) ( )

( )
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where the numerator ( )NG   and the denominator ( )DG   are even order polynomials of the form: 

8 6 4 2 8 6 4 2
4 3 2 1 0 4 3 2 1 0( )  ;      ( ) .N DG a a a a a G b b b b b =  +  +  +  +  =  +  +  +  +  (8) 

The coefficients of the above polynomials are found by simple identification and have the following 

expressions depending on the scaling parameter p and the specified peak frequency 0  of the BP prototype: 
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Thus, for any specified selectivity given by the scaling parameter p and a central frequency 0 , the BP filter 

coefficients are determined directly determined using relations (9). 

Two examples are given as follows. For the specifications 0 3 =  , 9p = , we get the following 

frequency response of the band-pass prototype, where 0.03234k =  (shown in Fig. 1b): 

( )( )
( )( )

4 2 4 2

1 4 2 4 2

1.199345 0.389249 3.411237 2.992464
( )

1.869429 0.906318 2.505538 1.613057
BPG k

 −  +  −  +
 = 

 −  +  −  +
 (10) 

For 0 2 =  , 3p =  we get the BP frequency response, with the same constant, 0.03234k = : 

( ) ( ) ( )
( ) ( )

2 2 4 2

2 4 2 4 2

0.217439 1.304327 1.521766 44.486768
( ) .

0.01376 0.0107423 9.752127 36.163913
BPG k

 −  −  +  +
 = 

 −  +  −  +
 (11) 

An important remark regarding the BP Gaussian prototype ( )BPG   given by (7) is that it is parametric, 

depending on the scaling parameter p  and the specified peak frequency 0 . For certain limits of variation of 

the scaling parameter p, within which the approximation (3) remains valid, we can obtain various BP 

prototypes, all of them of the same order of complexity, in our case 8N = . As we will see in the following 

section, this prototype will generate a very efficient 2D elliptically-shaped filter. 

3. ANALYTICAL DESIGN METHOD FOR ELLIPTICALLY-SHAPED FILTERS 

In this section, 2D elliptical filters will be derived by applying a specific frequency transformation to a 

factored polynomial approximation of the prototype frequency response.  
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3.1. Frequency mapping for designing elliptically-shaped filters 

The specified parameters are the values of the ellipse semi-axes and the orientation, described by the 

angle formed by the large axis with frequency axis 1 . From the frequency response (3) of the 1D prototype 

filter, we obtain a 2D filter with elliptical shape using the frequency mapping 2
1 2( , )E →   , where [17]: 

2 2 2 2
2 2 2 2

1 2 1 2 1 2 0 1 0 2 0 1 22 2 2 2 2 2

cos sin sin cos 1 1
( , ) sin(2 )E a b c

E F E F F E


        
  =  + + + +   − =  +  +       

    
  (12) 

The mapping of a circular filter into an elliptical filter is described by a linear frequency transformation [16]: 

1 1

22

0 cos sin
,

0 sin cos

E

F

   −      
=                  

 (13) 

where usually E F ; in (13), 1 2( , )   are the transformed variables and 
' '
1 2( , )   are the former variables. 

In this way, the unit circle is dilated along the axes 1 , 2  with factors E and F, then rotated with angle  , 

thus turning into a tilted ellipse. Thus, starting from a 1D prototype, a 2D elliptical filter results, described by 

parameters E, F and  . Using the identity ( )2 2 2
1 2 1 1 1 20.5 ( )  =   + − − , we get the mapping: 

2 2 2 2
1 2 1 2 1 2( , ) ( ) .E a b c →   =  +  +   +   (14) 

With notations 2 21 1q E F= + , 2 21 1r E F= − , the expressions of coefficients a, b and c result as: 

0 0

0 0

0

0.5 cos(2 ) sin(2 )

0.5 cos(2 ) sin(2 )

0.5 sin(2 ).

a a c q r r

b b c q r r

c c r

= − = +   +  

= − = −   +  

= = −  

 (15) 

To find a rational trigonometric approximation for 
2 on the range [ , ]−  , we use the variable change [14]: 

arccos( )  cos .x x =   =    (16) 

First we will find a rational approximation for the function ( )
2

arccos( )x  , using the change of 

variable (16). Thus, we obtain the first-order Chebyshev-Padé approximation in x :  

( ) ( ) ( )
2

arccos( ) 2.357533 0.710425 1 0.147456 .x x x  −  +   (17) 

Substituting back in (17) cosx =  , we get the following approximation for 
2 , plotted in Fig. 1c: 

( ) ( )2 2.357533 1 0.946216 cos 1 0.463012 cos ( ) ( ).P Q   −   +   =    (18) 

This approximation turns out to be accurate for [ , ] −  , with visible errors only near the margins of the 

specified frequency range, where it diverges; being of minimum order, it is also very efficient. An even more 

accurate approximation of 
2 , derived similarly, given by the second-order expression: 

( ) ( )2 1.3451 1 0.31518 cos 0.68117 cos2 1 0.99346 cos 0.08573 cos2   −  −   +  +    (19) 

shown in Fig. 1d. Obviously, the second approximation will give in principle 2D filters with a more accurate 

shape, but their order of complexity will be double. Therefore, we will mainly use in our design the first-

order approximation, and the second one will be eventually used only when the first one gives very large 

distortions in shape. Writing the approximation (18) for the two frequency variables 1 , 2  and their sum 

1 2 +   respectively, the expressions of 
2
1 , 

2
2  and 

2
1 2( ) +

 
are then replaced into (14) 

2 1 2 1 2 1 2
1 2

1 2 1 2 1 2

( ) ( ) ( ) ( , )
( , ) .

( ) ( ) ( ) ( , )

P P P M
E a b c

Q Q Q N


   +  
 →   =  +  +  =

   +  
 (20) 
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    (a)     (b) (c) (d) 

Fig. 1 – a) Prototype function ( )PG   for: 1p = (blue), 1.7p = (red), 3p = (orange), 6p = (magenta); b) BP filter 1( )BPG  ;  

c) first-order approximation of function 
2 ; d) second-order approximation of function 

2 . 

Making the calculations and using trigonometric identities we obtain the numerator and denominator as: 

1 2 1 2 1 2 1 2 1 2 1 2 1 2( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )M a P Q Q b Q P Q c Q Q P  =       +  +       +  +       +   (21) 

1 2 1 2 1 2( , ) ( ) ( ) ( ).N Q Q Q  =      +   (22) 

Substituting the expressions ( )P  , ( )Q   from (18) in (21), the parametric numerator 1 2( , )M    results as: 

1 2 0 1 2 1 1 2 2 1 2

1 2 1 2 1 2 1

2 1 2 1 2

( , ) ( , ) (cos2 ) ( , ) (sin 2 ) ( , )

4.47596 1.4029cos 1.4029cos +1.15024cos( ) 1.0328cos( ) 0.2391cos2
   

0.2391cos2 0.26372cos( 2 ) 0.26372cos(2 ) 0.

M q M r M r M

q

  =    +      +      =

−  −   +  −  − − 
= 

−  −  +  −  +  −

( )
1 2

1 2 1 2 1 2

1 2 1 2 1 2

1

2391cos(2 2 )

   2.553164cos +2.553164cos +0.769105cos( 2 ) 0.769105cos(2 ) cos2

2.23798 1.97804cos 1.97804cos +3.128286cos( ) 1.28552cos( )

   0.11955cos2 0.11955co

r

 
  +  

+ −    +  −  +    

−  −   +  −  −

+ −  − 2 1 2 1 2

1 2

s2 +0.252691cos( 2 )+0.252691cos(2 ) sin 2

0.11955cos(2 2 ).

r

 
   +   +    
 
 −  +  

 (23) 

Similarly, the denominator 1 2( , )N    is obtained from (22) as: 

1 2 1 2 1 2

1 2 1 2 1 2

1 2

( , ) 1.024813 0.570184cos 0.570184cos 0.570184cos( )

                0.107184cos( ) 0.024813cos2 0.024813cos2 0.107184cos( 2 )

                0.107184cos(2 ) 0.024813cos(2

N   = +  +  +  + 

+  − +  +  +  + 

+  +  + 1 22 ).+ 

 (24) 

Using trigonometric identities 
1

1 1 1cos 0.5 ( )z z− =  + , 1
2 2 2cos 0.5 ( )z z− =  + , in complex frequency 

variables 1
1

j
z e


= , 2

2
j

z e


= and taking into account (18) and (20)−(22), the mapping (20) is expressed in 

matrix form: 

( ) ( )2
1 2 1 2 ,T T →    z M z z N z  (25) 

where the vectors are: 1 4
1 1 1[1 ]z z− −=z  and 1 4

2 2 2[1 ]z z− −=z . The matrix corresponding to the 

numerator 1 2( , )M    in (16) is given by the linear combination of matrices: 

0 1 2(cos 2 ) (sin 2 ) ,q r r=  +    +   M M M M  (26) 

where the component matrices 0M , 1M  and 2M  of size 5 5  have constant elements and result by 

identifying the corresponding coefficients from the terms 0 1 2( , )M   , 1 1 2( , )M    and 2 1 2( , )M    of (23), 

interpreted as Discrete Space Fourier Transforms (DSFT) of the matrices 0M , 1M  and 2M , respectively. 

The denominator 1 2( , )N    also corresponds to a 5 5  matrix N with constant elements, resulted similarly 

through identifying coefficients of the terms of 1 2( , )N    in (24), regarded as DSFT. 
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0 1

0 0 0.1196 0.1318 0.1196 0 0 0 0.3846 0

0 0.5164 0.7015 0.5751 0.1318 0 0 1.2766 0 0.3846

;   0.1196 0.7015 4.4760 0.7015 0.1196 0 1.2766 0 1.

0.1318 0.5751 0.7015 0.5164 0

0.1196 0.1318 0.1196 0 0

− − − 
 

− − − −
 
 = =− − − − − −
 
− − − 
 − − − 

M M 2766 0

0.3846 0 1.2766 0 0

0 0.3846 0 0 0

 
 
 
 
 
− 
  

 (27) 

2

0 0 0.0598 0.1264 0.0598 0 0 0.0124 0.0536 0.0124

0 0.6429 0.9890 1.5642 0.1264 0 0.0536 0.2851 0.2851 0.05

;   0.0598 0.9890 2.2380 0.9890 0.0598

0.1264 1.5642 0.9890 0.6429 0

0.0598 0.1264 0.0598 0 0

− − 
 

− −
 
 = =− − − −
 

− − 
 − − 

M N

36

0.0124 0.2851 1.0248 0.2851 0.0124

0.0536 0.2851 0.2851 0.0536 0

0.0124 0.0536 0.0124 0 0

 
 
 
 
 
 
  

  (28) 

As can be noticed, the matrices M0, M1, M2 and N have a “band” structure along the second diagonal and are 

symmetric with respect to the central element. Once specified the semi-axes E and F of the ellipse and the 

orientation angle  , the matrix M is determined from (26), using (27)−(28). The elements of the 5 5  

matrices M and N are obtained by identifying terms of the expressions 1 2( , )M    and 1 2( , )N    as terms of 

Discrete Space Fourier Transform (DSFT) in frequency variables 1  and 2 . 

3.2. Frequency response of the elliptically-shaped filter 

The next step of the proposed design method is to apply the frequency transformation (25) to the low-

pass or band-pass prototype filter. As shown in section 2, the BP prototype of order 8 generally expressed as: 

( ) ( )8 6 4 2 8 6 4 2
4 3 2 1 0 4 3 2 1 0( )PH a a a a a b b b b b =  +  +  +  +  +  +  +  +  (29) 

can always be factored at least into two fractions, each one with the general expression: 

( ) ( )4 2 4 2
1 0 1 0( )PiH  =    +   +   +  + . (30) 

Applying the frequency mapping (25) to this prototype factor, we get directly the frequency response or 

transfer function of the corresponding 2D elliptically-shaped filter factor: 

( ) ( )1 1 2 1 1 2 1 2 2( , ) T T
BH z z =    z A z z B z  (31) 

where   is inner product and the vectors are: 1 2 8
1 1 1[1 ]z z z− − −=1z , 1 2 8

2 2 2[1 ]z z z− − −=2z . The 

9 9  matrices 1A  and 1B  result as a weighted sum of convolutions of the 5 5  matrices M  and N : 

1 1 0 1 1 0 ;       =  +    +    =  +   +  A M M M N N N B M M M N N N . (32) 

Thus, the pairs of matrices ( 1A , 1B ), ( 2A , 2B ) are calculated for the two factors 1( )BH  , 2 ( )BH   and the 

matrices EA , EB  of the overall elliptical filter 1 2 1 2 1 2( , ) ( , ) ( , )E E EH z z A z z B z z=  also result by convolution: 

1 2 1 2 ;      E E=  = A A A B B B . (33) 

In (32) and (33) the symbol   means two-dimensional convolution of matrices. In our case, by convolving 

matrices of size N N , we get a (2 1) (2 1)N N−  −  matrix. The same applies to equations (38) and (39). As 

a remark, even if the filter transfer function 1 2( , )EH z z  is expressed in the complex frequency variables 1z  

and 2z  to be conveniently put in matrix form, it is a real number, so the obtained 2D filter is zero-phase. 

3.3. Circular filters derived as a particular case 

A useful particular case of the designed elliptically-shaped filters are obviously the circular filters. 

They can be obtained using a particular choice of parameters in frequency mapping (11), namely equal semi-

axes 2E F= =  and orientation angle of arbitrary value, in particular 0 = . With these settings, the 
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transformation (14) becomes 2 2 2
1 2 → + , which is known to yield circularly-shaped filters. The mapping 

(12) in principle remains valid, and since in (15) we have 1q = , 0r = , the matrix M reduces to the 5 5  

constant matrix 0M . However, through a direct analysis of the circular case, the designed filter may result 

less complex. Thus, writing (18) for frequency variables 1  and 2 , we obtain: 

1 2 1 22

1 2 1 2

1 0.946216cos 1 0.946216cos ( , )
2.35753

1 0.46301 cos 1 0.46301 cos ( , )

C

C

M

N

 −  −   
 →  + = 

+   +      

. (34) 

Using trigonometric identities as before, the mapping (34) in matrix form will be: 

( ) ( )2
1 2 1 2 1 2 1 2( , ) ( , ) T T

C C C CM N →     =    z M z z N z , (35) 

where the vectors are: 1 2 1 2
1 1 2 2[1 ] ;   [1 ]z z z z− − − −= =1 2z z . The numerator 1 2( , )CM    and denominator 

1 2( , )CN    are in fact the Discrete Space Fourier Transforms (DSFT) of the matrices CM  and CN : 

0.4366 0.7618 0.4366 0.03317 0.18214 0.03317

0.7618 4.7938 0.7618  ,       = 0.18214 1 0.18214

0.4366 0.7618 0.4366 0.03317 0.18214 0.03317

C C

− − −   
   

= − −
   
   − − −   

M N  (36) 

Once found the frequency mapping for circular filters, the next steps of the design process are similar to 

those for elliptical filters, described in sub-section 3.2. Based on the Gaussian BPF prototype given by (29), 

factored into two ratios like (30) and applying the frequency mapping (35), we obtain the transfer function of 

the corresponding 2D circular filter factor: 

( ) ( )1 1 2 1 1 2 1 2 2( , ) T T
BC C CH z z =    z A z z B z , (37) 

where   is inner product and the vectors are: 1 2 4
1 1 1[1 ]z z z− − −=1z ,  1 2 4

2 2 2[1 ]z z z− − −=2z . The 

5 5  matrices 1CA  and 1CB  result as a weighted sum of convolutions of the 3 3  matrices CM , CN : 

1 1 0 1 1 0 ;    C C C C C C C C C C C C C C=  +    +    =  +   +  A M M M N N N B M M M N N N . (38) 

Determining similarly the 5 5  matrices 2CA  and 2CB  for the second factor, the matrices CA  and CB  of 

the overall elliptical filter 1 2 1 2 1 2( , ) ( , ) ( , )C C CH z z A z z B z z=  also result by convolution, and are of size 9 9 : 

1 2 1 2 ;      C C C C C C=  = A A A B B B . (39) 

Thus, designing circular filters directly rather than as a particular elliptical filter, complexity is much lower. 

3.4. Design algorithm 

The design procedure described above is presented in a brief, synthetic form as follows. Since the 

proposed design method is analytical, there is no optimization procedure and therefore no iterative algorithm 

seeking to minimize a cost function or error (such as LMS, RLS etc.). However, the sequence of design steps 

presented as follows can be regarded as an associated pseudo-code: 

For elliptically-shaped band-pass filters: 

(a) Calculate the parameters q  and r ,  from the specified semiaxes values, E and F; 

(b) Read the matrices 0M , 1M , 2M  and N  with fixed, constant elements from (27)–(28); 

(c) Calculate cos 2  and sin 2 , from the specified orientation angle  ; 

(d) Calculate the frequency mapping matrix M  using (26); 

(e) Calculate the scaling parameter p, from the specified bandwidth or cutoff frequency c , using (4); 

(f) Calculate using (9) the set of coefficients 0 4,...,a a , 0 4,...,  b b , for given p  and peak frequency 0 . 

(g) The Gaussian BPF prototype is factored into two elementary fractions like (30), as in examples 

(10) and (11), thus their coefficients are determined; 

(h) Determine matrices 1A , 1B  for the two factor fractions, using (32) and coefficients from step (g); 
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(i) Finally, calculate the matrices EA  and EB  of the overall elliptical filter using (33). 

For circular band-pass filters: 

(a) Calculate the scaling parameter p  using (4), from the specified bandwidth or cutoff frequency c ; 

(b) Calculate using (9) the set of coefficients 0 4,...,a a , 0 4,...,  b b , for given p  and peak frequency 0 . 

(c) The Gaussian BPF prototype is factored into two elementary fractions like (30), as in examples 

(10) and (11), thus their coefficients are determined; 

(d) Read the matrices CM  and CN  with fixed, constant elements (from (36)); 

(e) Determine matrices 1CA , 1CB  for the two factor fractions, using (38) and coefficients from step (c); 

(f) Determine the matrices CA  and CB  of the overall circular filter using (39). 

The functions written in MATLAB implementing these pseudocodes, which calculate and plot the 

frequency response and contour plot for any given specifications can be found in the repository webpage [20]. 

3.5. Design examples of elliptical and circular filters 

Next, some design examples are given for various elliptical and circular filters with imposed 
specifications, using the proposed analytical technique. In Fig. 2 the frequency responses and corresponding 
contour plots are displayed for 6 elliptical filters, described by the given parameter values (peak frequency 

0 , scaling parameter p, semi-axes E and F, orientation angle  ). The filter (a) is a very selective LP 

elliptical filter, the rest are BP filters. As can be noticed, all filters have an accurate elliptical shape in the 
frequency plane, without visible distortions even near the margins. 
 

         
       (a)         (b) 

    
       (c)         (d) 

    
       (e)         (f) 

Fig. 2 –  Frequency responses and contour plots for the given parameter values: a) 9p = , 3E = , 0.3F = , 6 =  ;  

b) 0 2 =  , 3p = , 2.3E = , 1F = , 6 =  ; c) 0 2 =  , 3p = , 2E = , 1F = , 4 =  ; d) 0 4 =  , 3p = , 3.4E = , 

1.8F = , 6 =  ; e) 0 4 =  , 4p = , 3.4E = , 0.8F = , 6 =  ; f) 0 2 =  , 6p = , 2.8E = , 0.8F = , 6 =  . 
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Some examples of circular BP Gaussian filters designed using the given specifications are shown in 
Fig. 3. The filters (a) and (b) are obtained using the simpler, first-order approximation (18); while the 

narrower filter (with 0 3 =  ) has a good circular shape, the wider filter (for 0 3 4 =  ), as show the 

contours, has a shape with some visible distortions from circularity. This effect is more visible for wider 
filters, i.e. towards the frequency plane margins. For a correct shape, we should use the second-order 

approximation (19); thus we obtain the circular filters (c), (d), with peak frequency 0 0.8 =   and scaling 

parameter 3p =  and 9p =  respectively. This time, the contours show a very accurate circular shape even 

near frequency plane margins; of course, this shape accuracy comes with the price of a double order of 
complexity for the 2D filter. 
 

    

                                                (a)                                                                                                          (b) 

    
                                                 (c)                                                                                                         (d)  

Fig. 3 – Frequency responses and contour plots of circular filters for the given parameter values: a) 0 3 =  , 6p = ;  

b) 0 3 4 =  , 3p = ; c) 0 0.8 =  , 3p = ; d)
 0 0.8 =  , 9.p =  

4. APPLICATIONS IN IMAGE FILTERING 

Some simulation results are given here for image filtering applications of the designed elliptical and 
circular filters. First the FFT spectra of some simple binary test images are calculated and displayed, for a 
better understanding of their filtering. For instance, in Fig. 4, image (a) containing one black circle against 
white background, has the FFT spectrum magnitude (b) with a concentric circular shape and cross-section 
(c); image (d) with concentric circles also has a similar spectrum shown in (e); The test image (f) containing 
circles of various sizes and thickness has the FFT spectrum (g) with a fine concentric structure; LP or BP 
circular filters with various peak frequencies and bandwidths will simply select circular portions of these 
spectra. Of course, for more complex images, the spectrum is also complicated and filtering can no longer be 
easily interpreted. Image (h) results applying a narrow, circular LPF with 5p = ; the LPF has an isotropic 

blurring effect depending on value p; as can be noticed, the larger and thicker objects remain more or less 
visible, while the thinner ones are very blurred. Then, by thresholding with a given threshold value, we get a 
binary image in which some objects from original image are preserved, while others vanish (like thinner 
rings), depending on the degree of blurring and threshold value; thus, image (i) results from the blurred 
image (h) by applying a threshold of value 0.36th = . However, in order to apply this subunitary threshold, 

the filtered image pixel values must be first scaled within the range [0,1] . Therefore, this LPF can be used to 

select objects in images, according to their size. Image (j) is the result of circular BP filtering. 
The next examples shown in Fig. 5 use directional elliptical filters, with given specifications.. Image 

(a) contains ellipses of various sizes and orientations; its FFT spectrum (b), at a closer look, reveals also a 

fine elliptical structure. Using the elliptical LPF in Fig. 3a with parameters 9p = , 3E = , 0.4F = , 6 =  , 

we get image (c) in which the objects (ellipses) whose spectra overlap with the filter characteristic are 
preserved, while the others are more or less blurred, depending on their orientation. Rotating the elliptical 
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filter by 2 , i.e. for an angle 2 3 =  , other ellipses are detected and the former ones are blurred, as in 

image (d). Finally image (e) results from the elliptical BPF in Fig. 2b. In this case, the filter passes the 
medium frequencies, while the components of low and high frequencies are removed. Another filtering 
example is a “real-life” grayscale image of 650 750

 
pixels, in Fig. 5f, showing a view of high buildings 

(skyscrapers) seen from ground level (also used as test image in [19]). This image contains straight lines 
oriented under various angles, marking the building structure, and is convenient for testing directional 
filtering. The images in Figs. 5g–5i result from selective directional filtering, using an elliptical LP filter, with 

6p =  and various orientation angles ( 6 =  , 0.4 , 0.2−  ). The directional filtering effect is clearly visible; 

according to specified filter orientation, different straight lines representing contours or other details are 
outlined, while others are more or less blurred, each depending on its orientation. Therefore, this directional 
filtering can be applied in detecting and selecting objects with various orientations from images. The 
MATLAB function for image filtering using such filters, as well as the used test images are available at [20]. 
 

      
                  (a)                                     (b)                                          (c)                                      (d)                                    (e) 

            
                   (f)                                     (g)                                      (h)                                        (i)                                        (j) 
Fig. 4  a–d) Simple binary images containing circles; b–e) FFT spectrum magnitudes; c) cross-section of the FFT spectrum of image 

a); f) binary image with circles; g) its FFT spectrum; h) LP filtered image (p=5); i) image thresholded with 0.36th = ;  

j) BP filtered image with 5p = , 0 2 =  . 

             
                  (a)                                      (b)                                      (c)                                      (d )                                       (e) 

    
                        (f)                                                 (g)                                                 (h)                                                (i)  

Fig. 5 – a) Binary image with ellipses; b) its FFT spectrum; c) LP filtered with 9p = , 3E = , 0.3F = , 6 =  ; d) LP filtered with 

9p = , 3E = , 0.3F = , 2 3 =  ; e) BP filtered with 0 2 =  , 3p = , 2.3E = , 1F = , 6 =  ; f) skyscrapers image;  

g)–i) skyscraper image directionally filtered with 6E = , 1F = , 6p =  and angles: 6 =  , 0.4 =  , 0.2 = −  , respectively. 
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5. COMPARATIVE DISCUSSION 

The aim of this work was to propose an efficient analytical design procedure for zero-phase anisotropic 

2D filters, belonging to the same class: elliptically-shaped filters, with circular (isotropic) filters as a 

particular case. As a comparative reference to existing works, other analytical techniques for designing 2D 

elliptical and circular filters have been previously proposed by the author. Thus, the filters described in [14] 

and [15] are based on digital prototypes and the frequency mapping leads to low-pass 2D elliptical and 

circular filters with complex coefficients, more difficult to implement. The filters proposed in [16] are based 

on zero-phase prototypes and are somewhat related to the ones proposed here; however, the frequency 

transformation used relies on Euler approximation and bilinear transform, which are known to introduce 

shape distortions. To the best of author’s knowledge, BP Gaussian elliptical filters have not been approached 

previously. 

A rigorous comparison in terms of performance with state-of-the-art oriented filters of this shape is 

quite difficult to be made, due to the large variety of filters and methods found in the literature. Design 

approaches like [4] (using McClellan transform for magnitude approximation), [5] (set of filters using 

multiscale techniques) or [6] (obtaining near-elliptical symmetry by adjusting parameters), as well as the 

circular filters in [10] and [11] are very different from the one proposed here and lead to filters with other 

purposes and characteristics, so they are difficult to compare with our proposed method.  

The Gaussian filter was chosen as prototype for an elliptically-shaped 2D filter due to its advantages. It 

can be efficiently approximated as a ratio of even polynomials (in our case of order 4, given by (2)) and can 

be scaled on the frequency axis to adjust its selectivity, according to (3), as shown in Fig. 1a. For very 

selective filters, the Gaussian shape is probably the ideal one. Its frequency response is zero-phase; the 

frequency components will not be phase-shifted, so image distortions will not occur. The resulted filters have 

an accurate shape, with negligible distortions, even for large bandwidth, close to frequency plane margins. 

A major advantage of the proposed directional filters is that they preserve the same order regardless of 

directional selectivity, since they simply result applying the same frequency mapping (25) to basically the 

same prototype, which is narrower or wider, as specified by the selectivity scaling parameter p. Therefore, it 

should have the same architectural complexity, which is beneficial from implementation point of view. 

The proposed design method is entirely analytical, without using any global optimization techniques; 

the directional filters designed analytically have also the advantage of being adjustable or tunable, since their 

matrices determined by (32), (33), (38), (39) depend explicitly on the specified parameters (semi-axes E  and 

F , orientation angle  , peak frequency 0  and scaling parameter p). For any given parameter values, the 

particular filter matrices result directly, following the steps of the design algorithm in section 3.4. Therefore 

an advantage of the method is its versatility; the design need not be resumed each time again from the start 

for various specifications. Moreover, the overall 2D filter matrices result directly as convolutions of smaller-

size matrices, which may be a useful feature in implementation. This implies that a given image filtering may 

be implemented sequentially, in several successive steps, being computationally efficient. 

6. CONCLUSIONS 

The proposed analytical design technique is simple and efficient. In order to derive 2D elliptical or 

circular filters, a specific frequency transformation was determined, using Chebyshev-Padé approximation. 

This mapping is applied to the factored, LP or BP Gaussian prototype, thus leading directly to the frequency 

response of the desired 2D filter, which also results factored, thus simplifying its implementation. Due to the 

accuracy of used approximations, the frequency response results with a very precise, correct elliptical shape, 

without any distortions even near the frequency plane limits. The main advantage of the method is that the 

resulted filter is parametric, in the sense that the filter matrices contain explicitly the imposed specifications 

(orientation, shape and selectivity); therefore, the filter is adjustable and once given the specifications, the 

filter matrices are already determined; moreover, they can be written as convolutions of small size matrices. 

Another benefit of the method is that, due to prototype scalability, all designed 2D filters result of the same 

order, regardless of their specified selectivity; this feature is also very useful from implementation viewpoint. 
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