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In this paper hypothesis tests are proposed for discrimination between the populations of two Alpha
distributions. This distribution is used for highly skewed data. The tests developed here are uniformly
most powerful unbiased and can be used to test various general hypotheses related to this probability
distribution which is less known by professional statisticians.
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1. THE ALPHA DISTRIBUTION

Let α and β be positive real numbers. The function ),0(),0(:),;(~ ∞→∞βα⋅ρ  defined by
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1)(  is a probability density function with respect to the Lebesgue measure

restricted to ),0( ∞ .
The probability measure defined over the domain ),0( ∞  having the probability density function

),;(~ βα⋅ρ  is called the Alpha distribution. This distribution has two parameters α and β and it is denoted in
the following by βα ,A . It was introduced by Drujinin in 1967 [5] and it has been investigated in a series of
studies [2], [4], [7], [10] and [14] showing how it can be applied to highly skewed data observed in various
industrial processes. The Alpha distribution is less known [8], [9] and as such inferential tools are less
developed. The aim of this paper is to fill that gap in the literature and provide uniformly most powerful
unbiased tests for discriminating between series of data coming from different populations. The results
presented here may have potential applications in reliability modelling and applied statistics for control of
industrial processes as already exemplified in [1], [3], and [12].

The paper is organised as follows. The next section briefly introduces the main elements following
from the classical exponential family set-up. Section 3 contains the main results of the paper concerning tests
of the differences between the parameters of the same type when the other parameters are unknown. The last
section summarises the conclusions.

2. STATISTICAL MODELLING
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( )}0,|{,),,0( ,),0( >βα∞ βα∞ AB (2)

is of exponential type ([6]) and the statistic S is sufficient for inference on the unknown parameters.
Following [13] it is possible to choose a σ-finite measure ν on ( )),0(),,0( ∞∞ B  that dominates the

statistical model (2). The probability density function of the probability distribution βα ,A  with respect to ν is

>βα<βα=βαρ )(),,(),(),;( xSQecx (3)

for all positive x.
The likelihood function associated to the statistical model represented by (2) is
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3. TESTS FOR DISCRIMINATING BETWEEN TWO ALPHA POPULATIONS

The novelty of this paper consists in testing the discrepancy between two distributions from the Alpha
family. Consider the statistical model
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for all positive x’s and y’s, with ( ) ),(),(,,, 22112211
21 βαβα=βαβακ nn cc .

Here we consider first the tests for the comparison of parameters 21 ,ββ  when the other parameters

21 , αα  are unknown. It is worth pointing out that the research cited above on the statistical inference for the
Alpha distribution assumes that 3>α , motivated mainly by the values used in empirical studies. While this
greatly simplifies the inferential process due to the fact that  1)( ≅Φ α  it is an unnecessary restriction.

The function in (6) can be rewritten equivalently as
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and where 00 >λ  is known.
Hence, the statistic tTTTU ),,,( 321  is sufficient for the set of parameters twww ),,,( 321θ . In the

following );,( εnms  denotes the quantile of order ε for the Fisher-Snedecor distribution nmS ,  with m and n
degrees of freedom and nmF ,  denotes the cumulative distribution and nm,ρ  denotes the probability
distribution function of the same distribution nmS , .

Consider now the statistic
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This statistic can be linked to the maximum likelihood estimator developed in [14] for the parameter α.
This statistic has an important property. If the null hypothesis cannot be rejected then the statistic V has an F
distribution which does not depend on the parameters of the Alpha distribution.
Theorem 1. Let 00 >λ  and )1,0(∈ε  be given. Then
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The variable at the numerator has a )1( 1
2 −χ n  distribution while the variable at the denominator has a
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Using again theorem 1, chapter 5, from [11], the test characterized by the critical region
)()( 213 cWcWC >∪<=  where 21 , cc  are determined from the conditions
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β.In this case the likelihood function given above in (6) is
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follows from (14) that the numerator of that expression is distributed N(0,1). Similarly, the statistic from the
denominator is distributed )1( 21
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degrees of freedom. Hence, the statistic *W  is free over the domain { } .0,|),;,( 111

* >βαβαβα=Ω
Lets denote by mmqm Fs ρ,,;  the quantile of order q, the cumulative distribution function and the density
probability function respectively, of the Student distribution with m degrees of freedom. The following
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4. CONCLUSION

The Alpha distribution is a two-parameter class of distributions that is less known in the literature in
spite of proving to be very useful in modelling skewed data. Statistical models based on this relatively
unknown distribution may provide a general platform for inference related to many areas of statistics,
probability and engineering.

In this paper some uniformly most powerful unbiased tests were proposed to discriminate between two
Alpha populations. The tests are developed for each type of parameter while keeping the other unknown. The
hypothesis being tested covers the whole spectrum of possibilities.
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