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QUASIRESONANT SCATTERING

 Cornel HATEGAN*, Horia COMISEL, Remus A. IONESCU

Institute of Atomic Physics, Bucharest, Romania

The Quasiresonant Scattering consists from a Single Channel Resonance coupled by Direct
Interaction transitions to some competing reaction channels. A description of Quasiresonant
Scattering, in terms of generalized reduced K-, R- and S- Matrix, is developed in this work. The
Quasiresonance’s decay width is, due to channels coupling, smaller than the width of the ancestral
Single Channel Resonance (Resonance’s Direct Compression).

1.  INTRODUCTION

A nuclear reaction develops from initial to final channels via an intermediate Compound System.
According to relative number of degrees of freedom involved in the Compound System, the nuclear reactions
are considered either as Direct or Resonant ones. The Direct Reactions involve few degrees of freedom,
usually those defining initial and final reaction channels as well as those involved in transitions between
channels. A direct process does exhibit a monotone energy dependance of the cross-section excitation
functions. The Resonant Reactions are on opposite extreme, involving all degrees of freedom of the
Compound System. A quasistationary state of the Compound System, called Resonance, takes shape;
afterwards it decays with different probabilities – the partial decay widths – in all reaction channels. The
Resonance’s decay is described by its total decay width, i.e. the sum of all channel partial decay widths. The
resonant reaction does exhibit sharp change in cross-section excitation functions of all reaction channels.

The multichannel Resonances are, usually, described by poles of the Scattering S- Matrix, e.g. [1], or
within its parameterizations, as poles of the R- Matrix, e.g. [2], of the K- Matrix, e.g. [3], or even by Green
operators of the Effective Hamiltonians for Compound System, e.g. [4]. The Direct Reactions are described
either by Distorted Waves Born Approximation or by Coupled Channel Methods, e.g. [5].

However there are multichannel reaction phenomena which do share both characteristics of Resonant
and Direct processes. They are experimentally evinced as resonant structures in some reaction channels,
while other competing reaction channels display a Direct Interaction monotone energy dependance of the
excitation functions. Physically they do not involve a genuine multichannel Resonance but rather they
correspond to a Single Channel Resonance preceded or/and followed by direct multichannel transitions.
Examples of such manifestations in excitation functions do appear in Low Energy Nuclear Physics as,
“Coupled Channel Resonances”, e.g. [6], [7], some “Threshold Anomalies”, e.g. [7], [8], or “Molecular
Resonances” in Heavy Ion Reactions, e.g. [9], etc. This type of scattering, involving partial physical features
of both Resonant and Direct Reactions, was called Quasiresonant Scattering, [10].

The Quasiresonant Scattering is usually described, within numerical approaches, by the methods of
Coupled Channels, e.g. [5], [6]. These methods are, however, suitable mainly for descriptions of
multichannel direct transitions. One needs a formal framework describing unitary both direct transitions as
well as Single Channel Resonance involved in same scattering process. The present approach to
Quasiresonant Scattering develops R- or K- Matrix descriptions, exhibiting how a Single Channel Resonance
can induce, via Direct Transitions, “resonant” structures in some competing reaction channels. One obtains
an interesting physical result, the Quasiresonance’s decay width becomes smaller, due to channel couplings,
than that of the ancestral Single Channel Resonance. This effect, exhibiting the Direct Interaction influence
on the Resonance Scattering, is named “Direct Compression Effect”.
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2.  UNITARITY SEPARATION OF DIRECT SCATTERING AND RESONANT STRUCTURES

The Scattering S- or Collision U- Matrices for a multichannel system are parameterized in terms of K-
or R- Matrix
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where imaginary P=Im L and real Sb=Re L – B parts of the logarithmic derivative L, (B – boundary condition
at channel radius) are Penetration and Shift – Factors. Either of the two parameterizations could be used due
to their formal similarity.

The study of Quasiresonant Scattering requires a method able to describe how a Single Channel
Resonance (from an invisible or unobserved channel) can induce a resonant structure in some other
competing reaction channels. Let divide the set of reaction channels in two groups: the retained (observed)
channels, a,b=1,2,…,N and the eliminated (unobserved) channel n=N+1. The effect of the eliminated
channel {n} on retained {N} channels is described by Reduced K-, [3], or R-, [2], Matrix
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or by Reduced S- or U- Matrix, [11],
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where the Level Matrix M and Partial widths GNλ are given by
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with channel indices c, d extending on both retained and eliminated channels, c, d= 1,2, …,N, n=N+1 and Tβ
is Direct Interaction Transition Matrix defined by Sβ=1+2iTβ.

The “Reduced Operator” procedure has to be extended to the Level Matrix too. A relation between Level
Matrix M including all channels and Level Matrix M0 , which does not include the eliminated n=N+1channel,

∑ ∑ ×+×−⋅−=−
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has to be established. Observe that the “bare” Level Matrix M0 and its counterpart M are related by
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nnnnnnnn SSSSMMMMMM →→=→=→  i.e. the reproduction of formulae relating the
two Level Matrices.

3.  QUASIRESONANT SCATTERING

A Resonance (λ) decays in channel (a) both directly (γλa), as in genuine resonant scattering, or via
intermediate channels (c) which are coupled to Resonance by Direct Interaction ( λ

βγcacT ). In R- Matrix
terms, the diagonal Penetration Factors Matrix || acaP δ || is replaced by a multichannel Direct Transition

Matrix, || β
acT ||.

Consider now the limit case of a Single Channel Resonance in the eliminated channel n,
.0,0 =≠ an λλ γγ  The partial width λaG and Level Matrix M become now,

λ
β

λ γnana iTG =

λ
β
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By using the unitarity conditions for background Sβ – Matrix, ∑=
c cnnn TT 2||Im ββ , one obtains
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The Quasiresonant Scattering consists of Single Channel Resonance coupled by direct transitions to some
other reaction channels. The magnitude of the Quasiresonant Process is proportional both to the strength of
ancestral (Single Channel) Resonance 2
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One can predict a physical property of the Quasiresoant Scattering, compression of the
Quasiresonance’s decay width, ∑−→

c ncnn T 222 )||1( λ
β

λ γγ : The Quasiresonance’s Structure width is
narrower than that of the ancestral Single Channel Resonance. This multichannel effect can be named
“Direct Compression” of the Resonance. The Compression effect persists even in case of single channel,
being related to direct (background) scattering, ai

aa eS δβ 2= , (δa   - single channel background scattering phase

shift). For the single channel scattering, the Resonance’s width is compressed to aa δγλ
22 cos . For no-

background scattering (δa = 0) there is no compression; the “strong” – background scattering, (e.g. Echo -
descending phase shift   2/πδ ≈ ), results into Resonance’s extinction. Another peculiar property of the
background – Resonance’s interplay does concern the level shift 2Re nnnT λ

βγ which could be non-linear energy

dependent; this implies a change of energy scale linearity as stronger as Resonance strength ( 2
nλγ ) is. Lane

discussed such an effect within R- Matrix framework, [8].
Interesting physical aspects are exhibited by Level Matrices M and M0, related by
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, i.e. the Resonance is replaced by an Echo, then  the relations between the two Level
Matrices are inter-changed. The Resonance is related to a scattering phase shift increasing by π/2 while the
Echo is related to a phase shift decreasing by same amount. If, hypothetical, an Echo is coincident with the
Resonance then their effects are compensated, i.e. Resonance’s extinction. The physical implications for
connection between Resonances and Echoes, as embodied in relations between the two Level Matrices of the
multichannel system, deserve an appropriate insight.

3.  CONCLUSIONS

The present study, based on Unitarity Separation of Direct Scattering and Resonant Structures, does
provide an adequate framework for description of Quasiresonant Scattering. The Quasiresonance’s partial
decay widths are product of the Single Channel Resonance strength and of the inter-channel transitions
matrix elements. The total width of the Quasiresonant structure is smaller than that of the ancestral Single
Channel Resonance. This effect was named “Direct Compression” of the Resonance; it is intimately related
to strength of Direct Process. This result can be, probably, related to the Channel Coupling Pole, e.g. [7],
observed in numerical experiments with Coupled Channels Method for multichannel systems. The Channel
Coupling Poles appear for strong channel couplings; they originate in distant poles in energy or wave
number complex planes (for no channel coupling) which are driven to physical region (for strong channel
coupling), becoming subject of observation.

An alternative approach to Quasiresonant scattering, based on R- Matrix, [2], is Bloch’s description of
Single Particle Resonance, resulting in similar outputs, [13].

A perspective of this formalism should be its extension (to closed channels) below threshold, within
Reduced S- Matrix framework.
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