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Pseudo-pure states are defined as the maximally degenerate mixed states. The density matrices of
such states have only two distinct degenerate eigenvalues. We shall show that, in the particular case
of the two qubits systems, these states are completely determined by the one of the two Bloch vectors
of the corresponding qubits.

I. INTRODUCTION

It is well know that the pure states are described by maximally degenerate density matrices which have
only two distinct eigenvalue: a non-degenerate eigenvalue equal to one and a degenerate eigenvalue equal to
zero. In other words the density matrix is a projector, i.e., is an idempotent operator. By definition such an

operator p satisfies a second order algebraic equation p> = p . In the papers [1-5] it was shown that the two-

qubits density matrices of pure states are completely determined by the Bloch vector of one of the gubits. In
the present paper we shall show that this situation is valid also in the case of the maximally degenerate
(pseudo-pure) states of the two-qubits systems. For these states their density matrices satisfy second order

algebraic equations p> —sp+ pl =0. For s =1 and p =0 we have the case of pure states. We shall prove

that the equations fulfilled by the Fano parameters of any maximally degenerate mixed state of a two qubits
system determine in a unique way the correlation matrix and one of the Bloch vector as functions of the other
Bloch vector. In order to obtain the equations fulfilled by the Fano parameters we shall use two different
parametrizations for the states of two-qubits quantum systems: the generalized Bloch vector parametrization
[1-10] and the Fano parametrization [3-9], [12-17] and the relations between them.

2. THE BLOCH PARAMETRIZATIONS

a) The Bloch vector.

Let H be a finite-dimensional Hilbert space with dimension equal to d . We denote by End(H) the
vector space of the linear operators on H and define on this space the Hilbert-Schmidt inner product by the
formula: (A,B) =Tr(A™B) for any A,BOENnd(H) (the operator A"is the adjoint of the operator A). The
Lie algebra su(d) of all selfadjoint operators ALJEnd(H)with TrA=0is a real subspace of End(H),

with dimension equal to D =d? —1. We shall take a basis {TJ-}J-D:1 of this subspace such that the following

relations are valid (TJ- )= 25jk . Then any density matrix pi.e. any linear selfadjoint and positive definite
operator with Trp =1 can be described by the following formula:

D

1 1
p(V)ZHHEZVjTJ (2.1)
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The real vector v =(v;,V,,...,Vy)O RP is called the generalized Bloch vector [1-10] and is defined in a
unique way by the density matrix p: v; =Trpt; = (p,rj) . But the converse correspondence is not valid for

any vectorv =(V,,V,,...,vVy) O R . The fact that the density matrix © is positive definite imposes severe
D

restrictions on the Bloch vectors [10]. Let us denote by <v,u >= Zv ;U; the Euclidean inner product on
J:

R® and by || v||=+/<V,v> the corresponding norm.

b) The equations satisfied by the Bloch vector of a pseudo-pure state.
The Lie brackets of the generators {Tj}'jjzlof the Lie algebra su(d)are given by the structure

constants{ f 37, = :

D
[7,.7.] :ZiZ f T (2.2)
These structure constants are the components of a totally anti-symmetric tensor and fulfill the Jacoby

identity:

D
Z(fklm fmpq + fplm fmkq + fkpm fmlq) = 0 (23)
m=

A remarkable fact, specific to the Lie algebrasu(d), is the existence of a symmetric bracket:

4 D
T,T, +T,T, :E5jkl +2;djk,rI (2.4)

Here d i are the components of a totally symmetric tensor. With the aid of anti-symmetric and symmetric

tensors we define an anti-symmetric and a symmetric product on the Euclidean space R®. The anti-
symmetric product is defined by:

(Xﬂ Y); :2 gfjkl X W (2.5)

The symmetric product is defined by:

(XU y); = z 2 dja X Yy (2.6)

Then the commutators and anticommutators becomes respectively:

[<x,r>,<y,r>]:2i<(xﬂ y),T > (2.7)
{<x,r>,<y,r>}:§<x,y>l +2<(xJ y.7> (2.8)
For any density matrix (2.1) we have
1 1 ' 1 [
V)P = (= +—<Vv,v3)l+<-Vv+=(v v > 2.9
p(v) (dz > ) 5 4(U )HT (2.9)

The quantum state described by the density matrix p is a maximally degenerate state if and only if:
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p*(v)=-sp(v)+ pl =0 (2.10)

Then, from (2.9) it follows that the Bloch vector vdescribes a maximally degenerate state if only if the
squared Euclidean norm of Vv is given by:

<v,v>=2(s-pd —%) (2.11)

Also it follows that the symmetric product of v with vmust lives in the one- dimensional subspace
generated by Vv :

vJv= 4(% —%)v (2.12)

We introduce the following notations u =2s —% andy =2s-2pd —% =<v,v>.

¢) The positivity of pseudo-pure density matrices

In the case of the density matrices p for pseudo-pure quantum states we have the spectral decomposition:

p=MAR +A,P, (213)
where the positive eigenvalues A, 20,4, 20,A,0, +A,0, =1, are degenerate with multiplicities:
TrF’1 :9(1—;) = 51
2 g<v,v>
1+———
du
y L (2.14)
TP, =— 1+ ————) =9,
2 8<v,v>
1+———
du
respectively. Let us suppose that the multiplicities O, ,0, are given andd, — 9, > 0. Then we have
<V,v>= 90,4, +5§) = & _51)(: (2.15)
2(6,-90,) 2(d -29,)
i.e., for such degenerate density matrices the all unitary invariants are expressible as functions of the
invariant (> . The eigenvalues A, ,A, are given by:
2
/\12:£+Ei\/“—+i<v,v> (2.16)
“d 4 16 2d
Then replacing the value of <v,v >given by the equation (2.15) in the equations (2.13) we obtain:
1:%+a;@5)
2 (2.17)
A —_ l _ l’ldl
©d 2(5,-9,)

The positivity condition for these eigenvalues gives:
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2(9, -9, 2(d - 29,
U< (9, -9,) _ 2 1) (2.18)
dod, do,
There are two families of pseudo-pure quantum states which are more carefully studied in the literature; the
Werner p,, states and the Horodecki states p,, which are defined by:

D, = F+1 I+V+ 1-F |-V
JdWd+1) 2 JdWd-1 2 219
1-f '
=fP, + | -P,
P -1 ~P)
Here the operators V and P, are defined by the following properties:
vi=| ; Trv=d ; P°=P, ; TrP,=1 ; VP, =PV =P, (2.20)

f(d‘ 1)5_f(f )

For Horodecki states we have O, = and for Werner states we

have 9, =1,0, =d —1. Hence the following restrlctlon follows for the parameter L :
by S, <2472 (221)
"TdWd-ny 0 " d '

: _20-2) _ =1because for both classes of states we have

d(d-1)  d

In the case of two qubits d =4 and

5,=1,5,=3.
3. THE FANO PARAMETRIZATION

a) The Fano parameters.

The density matrix corresponding to a state of a bipartite quantum system composed from two
subsystems of dimensions d, and d, can be parametrized by the Fano parameters [2-9], [12-17]:
1 1 1 1 dl —ldz -1
q (Il U |2)|' ? x> O |'|'2 g|1|]< % 4ZZK—H(DT |) (31)

d12 2 1

b) The equations satisfied by the Fano parameters of a pseudo-pure state.
The pseudo-purity condition (2.10) gives us the following equations for the Fano parameters [17]:

% 0d % U %, o (Ky) += Z(KK ) d Vs (3.2)

and

Es i % o Uy, +—<K 9, + 5 (K7K), d %% (33)

and
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aa e

1 1 (3.4)
d—z K,d® ips X, +—ZKJtd(2)|tqu zKsthqd(l)Spjd(z)tql _Zszthqf(l)spjf(z)tql
and
1 1 1
<X, X>+—<y,y>+=TrK'K =s-d,d,p- .
2d, 2d, Yy 4 10, P d.d, (3.5)

In the particular case of two qubits we haved, =d, =2,d;, =0, for all values of indices and f;, =g, for

1 .
all values of indices. Also we have u=2s-1 andy =2s-8p _E' Hence the above equations (3.1)-(3.3)

become:
Hx =Ky (3.6)
and
uy =KTx (3.7)
and
1 ]
UKH = XY, _Ezgspjgtql Ks K Y _((adJK)T)n (3.8)
(where adjK =K ™ detK ), and
<X,X>+<y,y>+TrK'K =2y (3.9)

4. THE TRANSFORMATIONS BETWEEN THE FANO AND BLOCH PARAMETERS

In the following we shall restrict our considerations to the case of two-qubits quantum systems for
which we haved; =d, =2. We shall denote by {u,,u,,...,u,} a basis in the d —dimensional Hilbert

space H . The operators E ;, are defined by:
Eij| :6k|uj (41)

The basis of the Lie algebra of su(2) defined in the first section is defined by:

T,=E, +Ey
=v-1(Ey —Ey) (4.2)
;= E11 - Ezz

The basis of the Lie algebra su(3) is given by (4.2) and by:
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T4 = E13 + E31 ; TS = \/__1 (E31 - ElS) ; T6 = E23 + E32 ;

1 (4.3)
T :\/—_1 (Esz _Ezs) v T =_(E11 +E22 _2E33)
J3
Analogously the basis of the Lie algebra su(4) is given by (4.2), (4.3) and by:
T, = E14 + E41 v T =\/__1 (E41 _E14) T =E24 +E42 P =\/T1 (E42 _E24) ;
(4.9

1
T, =Ey +Ey ;5 T, =1 (Bo—Ex) i T ZE(EM +Ep +Ey; —3E,)

If we consider the four-dimensional Hilbert space of two qubits as the tensor product of the two-dimensional
Hilbert spaces H which describe the pure states of each qubit then we can take the basis {u,,u,,u,,u,} in

H O H in the following way{u, CJu,,u, O u,,u, Ou,,u, Ou,}. With these conventions and putting the

operators in the product space on the left side and the operators in the four-dimensional space on the right
side we have the following relations:

(O S G o 'T@-:_T T, T =T, T OFTFT ;45
L FT T 3 T =1 - T L=T-T, LTI FT 7T, 44 ;

(4.5)
T3 TT é_ TE \/715
and
) 2 2
T1|:|l:T 4-1'--[11 7.[;:'-[ +5T 1ZID3=I TST_H E-IZ-I'-Z-L'-Tl 13
3 3
. 5 (4.6)
e S A b ?TE+8 3 ;=1 1
Then from the equality:
—l(l O < x>0 H 10< 19+ 3 3I*t (Pt = )+£|<£T>V 4.7
p 4 1 gz ki ] 4 2 L] ()

we obtain the following relations between the components of the Bloch vector and the Fano parameters:

1 1 1 1 1
V1=E(Y1+K31) Vs =§(y2 +K32) v Vs :E(y3 +K33) A =§(X1 +K13) v Vs :'E(Xz "'Kzs)

1 1 1 1 (4.8)
Ve =§(K11+K22) ;v Vg =§(K21 _Klz) A :2_\/§(ZX3 *+Ys _K33) v Vg ZE(KM _Kzz)-
and
1 1 _
2(K12+K21) (X1 KlS) :E(Xz _K23) )
(4.9

1 1 1
Vis =§(y1 “Ka) 5 Vi =E(YZ “Ks) 5 Vi :%(XS Y5 —Kg)

The converse relations are given by [11]:



7 On the pseudo-pure states of two qubits

2
X\ =Vt 5 X =V Y, ) X = \/— V15
_ ) _ ) _ 2 ) (4.10)
Y=V Vs 5 Y, =Vt g Y SV - \/— V15
Kiu=Ve +Vvy 5 Ky = vy 5 Ky =v, —v,
and
K21 =V, HY, Kzz =Vg Vg Kzs =Vg TV,
1 2 (4.11)
Ko =Vi =Viz 5 Ky =V, =V, 5 Ky =V +EV8 3 Vis

5. THE FANO PARAMETERS FOR PSEUDO-PURE STATES

In order to obtain the solutions of the equations (2.12) we must have the concrete expressions for the
components of the vectorvUv. These components are given using the values of the components of the

symmetric tensor d,, for the Lie algebra su(4) taken from [8]. We have:
2
(VUV)1 v Vg +V,Vg +VV, +VVy, +V 0V, + Evlv15
_ 2
(VUV)Z - ﬁvzvs ~VgV7 + VgV +VyoVyy VeV, + §V2V15 (5.1)

2
(VUV)s V Vgt (V +V Vs i _V72 "'V92 +V102 _V112 _V122) +\/;V3V15

and
_ 1 2
(VU V)4 = ViV =VpVy + V3V, ==V, Vg +VoVy5 +VioViy +4[2V,Vis
NE 3
~ 1 2
(VU V)s =V,Vy +V,Vg +V5V5 _ﬁvsvs VoV ~VoVyy §V5V15
(5.2)
~ 1 2
(VU V)a = V)V +V,Vg =VaVg —=—=VgVg +Vy, Vi3 + Vi, Vi +, [ -VeVig
N 3
_ 1 2
(VU V)7 SViVg —VpV, — VsV, = ﬁvﬂs FVipVig ~VyVig + §V7V15
and
2 2 2 2
(VUV)B (Vg +V10 +V11 +V12 =V," Vg =Vt =V, ) +
(5.3)

1 5 2 2 2 2 2 2
E(Vl VT VT VT VT -y, ) + §V8V15

and
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(VU V)g =ViVyy —VoVip +VVg +V,Vy5 = V V15

[

1 2
(VUV)lo =VVpp +VoVyy VgV +V, Vi, +V5Vig +ﬁvlovs - §V10V15

(5.4)
_ 1 2
(VUV)ll =V Vg +V,Vyg = V3V +VgVig ViV + EVMVS - §V11V15
1 2
(VUV)lz - V3V +VeVyy +VVi3 + \/§V12V8 - §V12V15
and
2
(VUV)13 V13V Vg + V5V +VeVyy +V7V, = §V13V15
2
(VUV)14 - V14V FV,Vip =VsVg +VgVip —VyVy — §V14V15
(5.5)
(VUV)15 (V1 +V2 +V3 +V4 +V4 +V5 +V6 +V7 +Vg ) -
1

%(ng +V102 "'\/112 "'V122 +V132 +V142) - %Vlsz

When we put these expressions in the equations (2.12) we obtain an apparently intractable system of
equations. The remarkable fact discovered by Kummer in [12] and [13] is the very simple and tractable form
of these equations when they are written for the Fano parameters. These equation were already been obtained
by us (see the equations (3.6), (3.7) and (3.8)] as a particularization of the general equations (3.2)-(3.5),
taken from [17]). We shall find these equations directly from the equations for the Bloch vector using the
relations between the Bloch and Fano parametrizations given above. We shall define the Fano parameters

(denoted by the same symbols with a hat) associated with the vector VUV as functions of the Fano
parameters of the vectorv :

X, = (VUV)4 + (VUV)n =KuY1 +KpY, Ky,
= (VUV)s + (VUV)lz =Ky + Ky Y, +Kyys
o2 2
= ﬁ(VUV)B + \/;(VUV)L% =Ky ¥ +Ka Y, +Kyys
Y = (VUV)l + (VUV)13 = KXy + Ky X, + KX
= (VUV)z + (VUV)14 =KX + KX, + KXy (5.6)
- 2 2
= (VUV)3 _E(VUV)B + \/;(VUV)ls = KX + KX, + KX
= (VUV)a + (VUV)g =X Y, — (K Ky =KyiKy,y)
Ky, = _(VUV)7 + (VUV)lO =X Y, +(Kyu Ky = KyuKy)
Kls = (VUV)4 _(VUV)ll =X Yy = (KyuKg =Ky Ky)
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and
Ky = (V) + (U)o =X, ¥y + (KoK = Ki5Ky,)
2 = (VW) + (V) = %, ¥, = (Ky Kyg = Ki5Kyy)
2 = (VUV)s — (V)1 = XoY5 + (KK, —KpKyy)
Ky = (V) = (UV)is = %Y = (KK =K 5K ,) (5.7)
Kg = (VUV), = (V)1 = %Y, + (K Ky = KKy)

= 1 |2 =%, Y, - -
K33_(VUV)3+ﬁ(VUV)8 \/Q(VUV)ls X3Y3 (K11K22 K12K21)

Then if we define the operator K on the 3-dimensional Euclidean space R® in which the Bloch vectors X
and y live we obtain:

)

~

X =Ky
y=K'x (5.8)
K=xy" - (adjK)’

from which the analogue for the Kummer equations in the case of pseudo-pure states follows immediately:
Ky = px
K™ x=puy (5.9)

xy" —(adjK)" = uK
In the above given equations we have used the following notations: K™ denotes the transpose of K and

adjK = K™ det K . In order to solve the equations (5.10) we shall use an idea of T. Constantinescu and V.

Ramakrishna [14-15]. We shall multiply the last equation from (5.10) on the right side with K™ and also we
shall multiply it transpose with K . Then we obtain:

(det K)I = pu(xx" —KKT)

(GetK)1 = p(yy” ~K'K) o1
If we multiply these equations on the right hand side with Xand y respectively then we obtain:
detK = (< x, x >—p?
K i 1o 10
Hence for any pseudo-pure state we have the important restriction:
<X, X>=<y,y> (5.12)

Replacing the values of det K given by the equations (5.12) in the equations (5.11) respectively we obtain
the important equations:

KKT =xx" +(-<x,x>+u%)l
. . , (5.13)
K'K=yy +(=<y,y>+u-)l
Let us consider that the Bloch vector X of the first qubit is given. Then the Bloch vector y of the second
qubit and the correlation matrix K are the solutions of the following equations:
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KKT =xx" +(=<x,x>+u?)l

det K = (< x, x> —-u?) (5.14)

yleTx
U

Similarly if the Bloch vector Y of the second qubit is given then the Bloch vector X of the first qubit and the
correlation matrix K are the solutions of the following equations:

KTK=yy' +(-<vy,y>+u?)l

detK = p(<y,y>-u?) (5.15)
X= 1 Ky
U

We remark that the symmetric, positive definite, 3X3 matrices K™K and KK ™ have the same eigenvalues
{,,{,,{; which are the roots of the Cayley-Hamilton equations:

2 -Tr(KTK)Z? +3[(rrKTK) ~Tr(K"K)?) — (detK)? =0
f (5.16)
23 -Tr(KK™)Z? +§[(TrKKT) —Tr(KK")?] - (detK)* =0

respectively. Indeed we have:
Tr(K'K)=-2<y,y>+3u°
Tr(KKT) ==2<x, x> +3u?
detK = u(<y,y>-u?) (5.17)
Tr(K'K)? =2<y,y>® -4u* <y,y>+3u"
Tr(KKT)? =2<x,x>% =4u® <x,x>+3u*
i.e., the matrices K" K and KK " have identical Cayley-Hamilton equations given by:
03 —Bur=2<x,x>){2+@Bu* —4u? <x,x>+<x,x>*) - (< x,x>-pu*)*=0 (5.18)
This equation factorizes in the following way:
(€ —p* ) - (H*=<xx>)* =0 (5.19)
Hence the common eigenvalues of the positive definitt matrices K'Kand KK are

¢, =p’andc, =c, = u’— <X, X >.( We remark that the restriction 0< p>—< X, X >is a consequence of

the fact that KK " and KK T are positive operators.) From this result and from the equations (5.14) we obtain
the spectral decompositions of the operators K™K and KK T :

T T

KKT = p? XX +(—<x, x>+u*)(I - X )
<X, X> <X, X >
" o (5.20)
KTK =y’ +(=<y,y>+p*)(l - )

<y,y> <y,y>



11 On the pseudo-pure states of two qubits

respectively. Let us define | K | =+ KK and|K |, = K"K . Then we have:

xx" xx"
K|, =p————+Ju’- -=
| K, H ks TVH <X, x>(l <X’X>)
" ' (5.21)
Kl =pu—2—+.,u*-< > -—22
K1, u<y,y> VH Y,y >( <y1y>)
and
K=%x|K|, O
K =+0|K |, (5.22)

(where O, and Oy are rotation matrices in the 3-dimensional Euclidean space of the corresponding Bloch
vectors of qubits) and respectively

y:iloT |K|, x=20"x
f (5.23)

x=+—0|K]|, y=%0y
u

Hence, for the two qubits pseudo-pure states the Bloch vectors of the corresponding qubits are related by a

rotation. There we have two singular cases: a) when u”>=<x,Xx>=<y,y> and b) when
T
. XX

<X,X>=<y,y>=0. In the first case we have K =—— and y=Xx. In the second case we have

K=puOand x=y=0.
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