ESTIMATING PROB\{Y<X\} IN THE CASE OF THE POWER DISTRIBUTION

Ion VLADIMIRESCU , Adrian IAŞINSCHI
Fac. Mathematics-Informatics, University of Craiova
Corresponding aythor: Ion VLADIMIRESCU, E-mail: vladi@central.ucv.ro

Abstract

We consider the problem of estimating the probability $\operatorname{Prob}\{Y<X\}$, where X and Y are two independent random variables having power distributions. We obtain a parametric estimator \hat{R}_{n} and a non-parametric estimator \bar{R}_{n} for the quantity $R=\operatorname{Prob}\{Y<X\}$. We compare the performances of these two estimators using Monte Carlo techniques and we find that the procedure used for the estimates is satisfactory. AMS 2000 Subject Classification: $62 \mathrm{~N} 05,62 \mathrm{~N} 02,62 \mathrm{G} 05$. Key words: stress-strength model; mechanical reliability; parametric and non-parametric estimates; Monte Carlo simulation.

1. INTRODUCTION

The problem of estimating $R=\operatorname{Prob}\{Y<X\}$ where X and Y are independent random variables has been studied for the exponential distribution by Kelley et al. [3], for the double exponential distribution in Awad and Fayoumi [2], and for the Luceño distribution [5].

We shall consider the power distribution $\pi_{b, \delta}$ with parameters $b, \delta>0$, that is the distribution on IR with the probability density function:

$$
\rho(x ; b, \delta)=\delta b^{-\delta} x^{\delta-1} \mathbf{1}_{(0, b)}(x), x \in \mathrm{IR}
$$

Let X and Y be two independent random variables such that $X \sim \pi_{b_{1}, \delta_{1}}, Y \sim \pi_{b_{1}, \delta_{1}}$. We can think of X as the strength of a mechanical system being subjected to a stress Y. The purpose of this paper is to give a measure of the mechanical reliability of the system, that is estimating $\operatorname{Prob}\{Y<X\}$ with δ_{1}, δ_{2} known and b_{1}, b_{2} unknown.

2. ESTIMATING THE RELIABILITY

Since

$$
\operatorname{Prob}(Y<X \mid X)= \begin{cases}\left(\frac{X}{b_{2}}\right)^{\delta_{2}}, & \text { when } 0<X<b_{2} \\ 1, & \text { when } X \geq b_{2}\end{cases}
$$

and

$$
\operatorname{Prob}(Y<X)=E(\operatorname{Prob}(Y<X \mid X))
$$

we obtain

$$
\begin{aligned}
\operatorname{Prob}(Y<X) & =\int_{0}^{\infty} \operatorname{Prob}(Y<X \mid X=x) \rho\left(x ; b_{1}, \delta_{1}\right) d x=\left\{\begin{array}{ll}
\int_{0}^{b_{0}}\left(\frac{x}{b_{2}}\right)^{\delta_{2}} \delta_{1} b_{1}^{-\delta_{1}} x^{\delta_{1}-1} d x, & \text { if } b_{1} \leq b_{2}, \\
\int_{0}^{b_{2}}\left(\frac{x}{b_{2}}\right)^{\delta_{2}} \delta_{1} b_{1}^{-\delta_{1}} x^{\delta_{1}-1} d x+\int_{b_{2}}^{b_{1}} \delta_{1} b_{1}^{-\delta_{1}} x^{\delta_{1}-1} d x, & \text { if } b_{1}>b_{2}
\end{array}=\right. \\
& = \begin{cases}\left(\frac{b_{1}}{b_{2}}\right)^{\delta_{2}} \frac{\delta_{1}}{\delta_{1}+\delta_{2}}, & \text { if } b_{1} \leq b_{2}, \\
1-\left(\frac{b_{1}}{b_{2}}\right)^{-\delta_{1}} \frac{\delta_{2}}{\delta_{1}+\delta_{2}}, & \text { if } b_{1}>b_{2}\end{cases}
\end{aligned}
$$

Let $t=b_{1} / b_{2}$. Then we define

$$
f(t)=\operatorname{Prob}(Y<X)= \begin{cases}t^{\delta_{2}} \frac{\delta_{1}}{\delta_{1}+\delta_{2}}, & \text { if } 0<t \leq 1, \tag{1}\\ 1-t^{-\delta_{1}} \frac{\delta_{2}}{\delta_{1}+\delta_{2}}, & \text { if } \mathrm{t}>1\end{cases}
$$

The function $f(\cdot)$ is obviously continuous and differentiable on $(0, \infty)$, increasing and convex on $(0,1)$ and non-convex on $(1, \infty)$, as we can see in the following: $f^{\prime}(t)=\left\{\begin{array}{ll}\frac{\delta_{1} \delta_{2}}{\delta_{1}+\delta_{2}} t^{\delta_{2}-1}, & \text { if } 0<t \leq 1, \\ \frac{\delta_{1} \delta_{2}}{\delta_{1}+\delta_{2}} t^{-\delta_{1}-1}, & \text { if } \mathrm{t}>1\end{array} \quad ; f^{\prime \prime}(t)= \begin{cases}\frac{\delta_{1} \delta_{2}\left(\delta_{2}-1\right)}{\delta_{1}+\delta_{2}} t^{\delta_{2}-2}, & \text { if } 0<t \leq 1, \\ \frac{-\delta_{1} \delta_{2}\left(\delta_{1}+1\right)}{\delta_{1}+\delta_{2}} t^{-\delta_{1}-2}, & \text { if } \mathrm{t}>1\end{cases}\right.$

The graph of f has the following appearance:

For fixed values of the parameters δ_{1}, δ_{2} we can obtain the value of t necessary to achieve a reliability value of 0.95 , or 0.05 , specifically $t_{0.95}=2.9240, t_{0.5}=0.0444$, for $\delta_{1}=1.5, \delta_{2}=0.5$. In the case $\delta_{1}=\delta_{2}$ we have $t_{1-\alpha}=\frac{1}{t_{\alpha}}$.
3. ESTIMATION OF $R=\operatorname{Prob}\{Y<X\}$

Remark. Let $Z \sim \pi_{b, \delta}$ and z_{1}, \ldots, z_{n} be a random sample from Z. Since $E(Z)=\frac{b \delta}{\delta+1}$, for $\delta>0$ known, with the method of moments we find that

$$
\hat{b}_{n}=\frac{1+\delta}{\delta} \bar{z}_{n}
$$

is an estimate for the parameter b.
Obviously, $\hat{b}_{n}=\varphi\left(\bar{z}_{n}\right)$, where $\varphi:(0, \infty) \rightarrow(0, \infty), \varphi(t)=\frac{1+\delta}{\delta} t$, is a differentiable function. Then, (see [4], pg. 119), it follows that

$$
\begin{equation*}
\hat{b}_{n} \xrightarrow{\text { a.s. }} b, \text { as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

Now let x_{1}, \ldots, x_{n} be a random sample from X and y_{1}, \ldots, y_{n} a random sample from Y. We assume that the samples are independent. Taking into account the fact that

$$
E(X)=\frac{b_{1} \delta_{1}}{1+\delta_{1}}, E(Y)=\frac{b_{2} \delta_{2}}{1+\delta_{2}},
$$

and using the method of moments, we obtain that

$$
\hat{b}_{1, n}=\frac{1+\delta_{1}}{\delta_{1}} \bar{x}_{n} \quad \text { and } \quad \hat{b}_{2, n}=\frac{1+\delta_{2}}{\delta_{2}} \bar{y}_{n}
$$

are estimates for the parameters b_{1} and b_{2}.
From (2) it follows that

$$
\hat{b}_{1, n} \xrightarrow{\text { a.s. }} b_{1} \text { and } \hat{b}_{n} \xrightarrow{\text { a.s. }} b_{2} \text { as } n \rightarrow \infty .
$$

Then,

$$
\begin{equation*}
\frac{\hat{b}_{1, n}}{\hat{b}_{2, n}} \xrightarrow{\text { a.s. }} \frac{b_{1}}{b_{2}}, \text { as } n \rightarrow \infty \tag{3}
\end{equation*}
$$

Since f is continuous, from (3) we get

$$
\begin{equation*}
\hat{R}_{n} \stackrel{\text { def }}{=} f\left(\frac{\hat{b}_{1, n}}{\hat{b}_{2, n}}\right) \xrightarrow{\text { a.s. }} f\left(\frac{b_{1}}{b_{2}}\right) \text {, as } n \rightarrow \infty . \tag{4}
\end{equation*}
$$

Therefore, for n large enough,

$$
f\left(\frac{b_{1}}{b_{2}}\right) \approx \hat{R}_{n}
$$

that is

$$
\hat{R}_{n}=f\left(\frac{\hat{b}_{1, n}}{\hat{b}_{2, n}}\right)=\left\{\begin{array}{ll}
\frac{\delta_{1}}{\delta_{1}+\delta_{2}}\left(\frac{\hat{b}_{1, n}}{\hat{b}_{2, n}}\right)^{\delta_{2}}, & \text { if } \hat{b}_{1, n} \leq \hat{b}_{2, n} \\
1-\frac{\delta_{2}}{\delta_{1}+\delta_{2}}\left(\frac{\hat{b}_{1, n}}{\hat{b}_{2, n}}\right)^{-\delta_{1}}, & \text { if } \hat{b}_{1, n}>\hat{b}_{2, n}
\end{array}= \begin{cases}\frac{\delta_{1}}{\delta_{1}+\delta_{2}} \hat{r}_{n}^{\delta_{2}}, & \text { if } \hat{r}_{n} \leq 1 \\
1-\frac{\delta_{2}}{\delta_{1}+\delta_{2}} \hat{r}_{n}^{-\delta_{1}}, & \text { if } \hat{r}_{n}>1\end{cases}\right.
$$

where $\hat{r}_{n}=\frac{b_{1}}{b_{2}}$, is an estimate for $R=f\left(\frac{b_{1}}{b_{2}}\right)=\operatorname{Prob}(Y<X)$.

4. SIMULATION STUDY

In this section we will consider, besides the parametric estimator \hat{R}_{n}, defined in the preceding section, a non-parametric estimator (see [5]), defined as follows:

$$
\bar{R}_{n}=\frac{\operatorname{card}\left\{\left(X_{i}, Y_{j}\right) \mid Y_{j}<X_{i}, 1 \leq i, j \leq n\right\}}{n^{2}}
$$

We will compare the mean bias (MB) and mean square error (MSE) for the two estimators. For an estimator \mathbf{R} we define the two above quantities by means of the following formulas:

$$
\begin{aligned}
& M B(\mathbf{R})=\frac{1}{N} \sum_{i=1}^{N}\left(R\left(r ; \delta_{1}, \delta_{2}\right)-\mathbf{R}\left(r_{i} ; \delta_{1}, \delta_{2}\right)\right) \\
& \operatorname{MSE}(\mathbf{R})=\frac{1}{N} \sum_{i=1}^{N}\left(R\left(r ; \delta_{1}, \delta_{2}\right)-\mathbf{R}\left(r_{i} ; \delta_{1}, \delta_{2}\right)\right)^{2}
\end{aligned}
$$

where N represents the number of experiments, in our case estimating R.
Random samples from $X \sim \pi_{b, \delta_{1}}, Y \sim \pi_{b_{2}, \delta_{2}}$ were generated, with $\left(b_{1}, b_{2}\right) \in\{(3,4),(3,6),(3,10),(3,10)\}$ and $\left(\delta_{1}, \delta_{2}\right) \in\{(0.5,0.5),(0.5,1.5),(0.5,3),(0.5,10)\}$. In order to obtain the MB and MSE the experiment was repeated $N=1000$ times. The results can be obtained, on request, from the authors. The simulation showed that:

1) \hat{R}_{n} and \bar{R}_{n} estimate R with errors of the 10^{-2} order in the worse case, that is when $b_{1}=b_{2}$. According to the values obtained for the $M S E, \hat{R}_{n}$ is superior. Also we noticed that $M S E$ appears to decrease exponentially when the sample size increases, as in the following plots(MSE versus sample size):

2) Generally, \hat{R}_{n} underestimates R, as in the next plots ($M B$ versus sample size):

3) $\operatorname{MSE}\left(\hat{R}_{n}\right)$ increases when $r=\frac{b_{1}}{b_{2}}$ is approaching 1 , as it can be observed in the next plot (MSE versus r):

We conclude that both estimators appear to work well, with an advantage for the parametric estimator \hat{R}_{n}.

Acknowledgement. We would like to express our gratitude to Prof. Dr. Viorel Gh. Voda for his useful observations and suggestions.

REFERENCES

1. AWAD, A.M., AZZAM, M.M., HAMDAN, M.A., Some inference results on $P(Y<X)$ in the bivariate exponential model, Comm. Statist. A-Theory Mehods, 10, pp. 2515-2525, 1981.
2. AWAD, A.M., FAYOUMI, M., Estimate of $P(Y<X)$ in case of the double exponential distribution, Proc. $7^{\text {th }}$ Conf. Probability Theory (Brasov, 1982)\}, Bucureşti, Editura Academiei Române, pp. 527-531, 1982.
3. KELLEY, G.D., KELLEY, J.A., SCHUCANY, W.R., Efficient estimation of $P(Y<X)$ in the exponential case, Technometrics, 12, pp. 359-360, 1976.
4. MONFORT, A., Cours de statistique mathematique, Ed. Economica, Paris, 1982.
5. ENACHESCU, C., ENACHESCU, E., Estimation of $\operatorname{Pr}(Y<X)$ in case of the Luceño Distribution, Rev. Roumaine Math. Pures Appl., 47, pp. 171-177, 2002.
6. BÂRSAN-PIPU, N., ISAIC MANIU, AL., VODĂ, V.GH., Defectarea. Modele statistice cu aplicaţii, Ed. Economică, Bucureşti, pp. 70-83, 1999
7. CIOCLOV, D., Rezistență şi fiabilitate la solicitări variabile, Ed. FACLA, Timişoara, 1975
