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We consider the problem of estimating the probability Prob{} < X}, where X and Y are two

independent random variables having power distributions. We obtain a parametric estimator R anda
n

non-parametric estimator R for the quantity R = Prob{Y < X}. We compare the performances of
n

these two estimators using Monte Carlo techniques and we find that the procedure used for the
estimates is satisfactory.
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1. INTRODUCTION

The problem of estimating R =Prob{Y < X} where X and Y are independent random variables has

been studied for the exponential distribution by Kelley et al. [3], for the double exponential distribution in
Awad and Fayoumi [2], and for the Lucefio distribution [5].

We shall consider the power distribution 11, 5 with parameters 5,8>0, that is the distribution on IR
with the probability density function:

p(x;5,8) =8h°x%"'1,, (x), xOIR

Let X and Y be two independent random variables such that X ~T, 5 , ¥ ~T, 5 . We can think of

X as the strength of a mechanical system being subjected to a stress Y . The purpose of this paper is to give
a measure of the mechanical reliability of the system, that is estimating Prob{Y < X} with §,,d, known and

b,,b, unknown.

2. ESTIMATING THE RELIABILITY

Since
>
Prob(Y < X | X) =, g , when0< X <b,,
5 when X 2 b,
and
Prob(Y < X) = E(Prob(Y < X | X))
we obtain
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8,b, % x% dx, ifb <b,,

B
oo,

Prob(Y < X) :IProb(Y <X|X =x)p(x;b,,0,)dx ==
]

MO0

¢ by
g—%ﬁ ,b, x> dx + qua;qxa*ldx, ifb, >b,
. 0 %
%ﬁg 61 > ifblez,
_El:lbzlj 5 +4
_D 5 6
g Op 0
d-o2o 2 ifp >b
o o 6 +9 b
Let ¢=b,/b,. Then we define
D526il6 , if 0<z<l,
f(O=Prob(y <x)=0 L (1)
-t =2 ift>1
0, +9,

The function f([J is obviously continuous and differentiable on (0,), increasing and convex on
(0,1) and non-convex on (1,), as we can see in the following:

0 6152 E6162 (62 )

T5 A ifo<r<l, 5 15 %272, ifo<r<l,
f'(t)=|:|1 2 ;f"(t):D 1 2
0 6,52 t-51‘1, ift>1 D_6162(61 +1)t_61_2, ift>1
@1-}-62 E 61+62
The graph of f has the following appearance:
0.8
0.6
0.4
0.2
02'&1'3511@31'21'41'51'32'0

For fixed values of the parameters 3,,0, we can obtain the value of ¢ necessary to achieve a
reliability value of 0.95, or 0.05, specifically #,,5 =2.9240, t,5 =0.0444, for o, =1.5,0, =0.5. In the case
0, =9, we have #,_, :L.

a

3. ESTIMATION OF R =Prob{Y < X}

Remark. Let Z~T, 5 and z,..,z, be a random sample from Z. Since E(Z)=6b—fl, for >0

known, with the method of moments we find that
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~_1+0_
bn = 6 ZI‘I
is an estimate for the parameter 5.

~ +
Obviously, b, =¢(z,), where §:(0,0) - (0,), d(¢) = %t, is a differentiable function. Then, (see

[4], pg. 119), it follows that
b, 0L b, asn - o 2

Now let x,,...,x, be a random sample from X and y,,...,», a random sample from Y. We assume
that the samples are independent. Taking into account the fact that

1 2

and using the method of moments, we obtain that
~ 1+9, ~ 1+9, _

b, = x, and b, =—
1n 61 n 2,n 62 yn

are estimates for the parameters b, and b, .
From (2) it follows that

Z;LnDﬂ‘» b, and Z;nDTDL b, as n - o,

Then,
b, b
01 L asn o 3)
b,, b,

Since f is continuous, from (3) we get

e B
f asn — o, 4
E{)Zn

Therefore, for n large enough,

that is

~ _b . .
where 7, = b—l , 1s an estimate for R = f%% Prob(Y <X).
2

2
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4. SIMULATION STUDY

In this section we will consider, besides the parametric estimator ﬁn , defined in the preceding section,
a non-parametric estimator (see [5]), defined as follows:

= _card{(X,,Y)|Y, <X,, 1<i, j<n}

n
n2

We will compare the mean bias (MB) and mean square error (MSE) for the two estimators. For an
estimator R we define the two above quantities by means of the following formulas:

MBR) = (R(38,8) -R(;: 8, 8)

MSE(R) =%Z(R(r;6p5z) -R(%: 3. 3))

i=1

where N represents the number of experiments, in our case estimating R .
Random samples from X ~m, 5, Y ~T, 5 were generated, with (b, ,bz)D{(3,4), (3,6), (3,10),(3,10)}

and (9,,9,) D{(O.S,O.S), (0.5,1.5),(0.5,3),(0.5,10)} . In order to obtain the MB and MSE the experiment was

repeated N =1000 times. The results can be obtained, on request, from the authors. The simulation showed
that:

1)1%,1 and R, estimate R with errors of the 107 order in the worse case, that is when b, =b,.

According to the values obtained for the MSE, 1%,1 is superior. Also we noticed that MSE appears to decrease
exponentially when the sample size increases, as in the following plots(MSE versus sample size):

0.004 S
000351 ¢
D.Dua—i
n.nuzs—f
D.Duz—f $
n.umaé

0.0011 §

MSE(R,)
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2) Generally, ﬁn underestimates R, as in the next plots (MB versus sample size):

ke

0.008

: -
0.00E ¢

: 2

] 8
0,004 : s

] - = &

: R
0.002] : % ; ; :

_ : 8 : :

SN SN SN U S
0 20 & Bl B0 g0 120
ke
MB(R))

0.008- .
0.008-
0.0041 : .

] o R
0.002] i X . . .

R SN SIS SN S—
0 20 4 B @ 1§ 120

] 3 - ks &
-D.I:II:IEE 3 R § ®

1 # o
-0.0041 3 .

1 ke

MB(R,,)



Ion Vladimirescu and Adrian Iaginschi 6

A b, . . . .
3) MSE(R,) increases when r = b—' is approaching 1, as it can be observed in the next plot (MSE
2
versus 7 ):
ke
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We conclude that both estimators appear to work well, with an advantage for the parametric
estimator 1%,1 .
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