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1. INTRODUCTION

For practical reasons, there is required a more and more complete and complex description of the
rheological behavior of rocks. For some simplier constitutive models, like the linear viscoelastic model, there
exist analytical solutions for many fundamental problems associated to the practical applications like the
calculus of mining structures [1]. For more complex constitutive models, like Cristescu´s elasto/viscoplastic
model [2], an analytical solution for the same fundamental problems is impossible to be obtained and only
the numerical approach of these is suitable.

The theoretical solutions obtained for the linear viscoelastic model afford qualitative interpretations
based on the constitutive restrictions, therefore the numerical values of the material constants do not have a
signifiant influence on the qualitative aspects delivered by the analytical solutions. On the contrary, even the
determination of the material functions for the Cristescu´s elasto/viscoplastic model is very difficult and
therefore the results are more or less sure (the numerical results are very dependent on the values involved in
the material functions, the material functions are not subject to constitutive restrictions).

The aim of this paper is to realise a comparision among the theoretical and the numerical results for
some diagnostic tests performed using the two constitutive models mentioned before.

2. THE CONSTITUTIVE EQUATIONS

The linear viscoelastic model for isotropic and homogeneous materials has the form
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σσσσ  – the current stress tensor, Kσσσσ – the stress tensor in the reference configuration, Rσσσσ – the relative stress
tensor, εεεε  – the infinitesimal strain tensor with respect to the reference configuration, " . " denotes time
derivatives. For this model the reference configuration  correspond to a preloading for the diagnostic tests or
for the primary stress state for the calculus of the mining structures, in any case, generally, not free of stress.
The material constants are subject to the following constitutive restrictions ([2], [3])
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The inequality 0>k  is in agreement to the hypothesis of using the infinitesimal strain tensor and thefore
only the compressibility of the volume is admited; other situations for the coefficients of viscosity vkk  and 
may be tolerated if the material constants are depending on the reference configuration, but only as long the
hypothesis of using the infinitesimal strain tensor comes up to. The other inequalities are binding upon all
situations.

The Cristescu´s elasto/viscoplastic model, for transient creep, for isotropic and homogeneous materials
has the form
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where it was used the notation ( )AAA +=
2
1  for the positive part of the function A,
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( ) ( )σσ= ,HH σσσσ  is a yield function with

( )( ) ( )tWtH =σσσσ (2.6)

the equation of the stabilization boundary (when O=Iεεεε!   and  O=σσσσ! ) with
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the irreversible stress power used as a work-hardening parameter, ( ) ( )σσ= ,FF σσσσ – a viscoplastic potential

establishing the orientation of Iεεεε! , Tk a kind of viscosity coefficient (the true viscosity coefficient 
σσσσ∂

∂FkT ).

The parameter W is not a real state variable because his evolution equation is a consequence of ()
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In the representation of this model, there is not clear which reference configuration is used. In some of
the applications the argument of H or F is a relative stress, in others the current stress. Further it will be used
the current stress. Habitually,
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In order to illustrate by diagrams the results from the theoretical approach, it can be used the constants
from [1] for Borod, Racos or Baraolt coal as follows in [6], [7].



3 Behavior in ideal diadnostic tests of rock like materials

For the ideal tests that will be considered, the specimens are supposed to be cylindrical and no special
real conditions of fastening are considered (like these considered in [4], [5]). In these conditions, the
constitutive laws will be formulated in principal components both for the infinitesimal strain tensor

321, ε=εε  and for the  current or relative stress tensor 321, σ=σσ  respectively R
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R
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R
1 , σ=σσ .

In these conditions the constitutive equations for the linear viscoelastic model take the form
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and for the Cristescu´s elasto/viscoplastic model the form
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Because the analyzed tests in this paper the stress state will be an uniaxial one, it will be used the
following notation
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3. UNCONFINED UNIAXIAL COMPRESSION TESTS UNDER CONSTANT LOAD

In this case, the reference configuration is characterized by
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and the relative stress tensor has the components
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The initial conditions are given by the instantaneous response
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In this situation, the differential equations which describe the process of deformation through
unconfined uniaxial compression constant load for the linear viscoelastic model with the initial conditions ()
admit the solution
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The constitutive restrictions (2.3) for vkk ≤<0  point out the following properties [2], [3]



Angela PETRESCU, Doina MASSIER 4

– horizontal assymptotes
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– the load is bigger, the strains in absolute values are bigger;
– for a creep in steps, it appears a hardening ([6],[7]);
– for an inverse creep, the strain is complete recoverable ([6],[7]).

In the same situation, the differential equations for Cristescu´s elasto/viscoplastic model with the initial
conditions (3.3) admit the solution
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because
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The creep is stabilized for

( ) ( )
( ) 0

1
K
1

1
K
111

K
1 >

σ+σ
σ+σσ+σ

o

oo

T h
f

k (3.8)

The stabilization boundary (horizontal assymptotes for the graphs ( ),11 tε=ε  ( )t22 ε=ε ) is defined through
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Natural, in the case of stabilized creep, 1ε  and 2ε  must increase with o
1σ , therefore the conditions
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It is less easy to give a theoretical proof of the hardening of the rock subject to a creep in steps. An idea
of this phenomena will appear in the example in [6], [7].



5 Behavior in ideal diadnostic tests of rock like materials

4. UNCONFINED UNIAXIAL COMPRESSION TESTS WITH CONSTANT LOADING RATE

While the reference configuration is the same as in the previous paragraph, the relative stress tensor has
the components
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R
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R
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The test begins from the reference configuration, so that the initial conditions are

0321 =ε=ε=ε ooo . (4.2)

In this situation, the differential equations which describe the deformation process for the linear viscoelastic
model (2.10) with the initial conditions (4.2) admit the solution
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In terms of relative stresses, the equations for the characteristic curves are
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The constitutive restrictions (2.3) point out the following properties ([2],[3])
–  the slope of the tangents to the characteristic curves in origin corresponds to the instantaneous response
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– the characteristic curves admit oblic assymptotes
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the slope of these assymptotes is these of the creep frontieres; the ordinates in origin of the assymptotes
increase with o

1σ!

–  for ∞→σo
1!  the characteristic curves tend to the lines of instantaneous response and  for 01 →σo!  to the

creep frontiers.
In the same situation, the differential equations for Cristescu´s elasto/viscoplastic model
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It results
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5. UNCONFINED UNIAXIAL COMPRESSION TESTS UNDER CONSTANT AXIAL STRAIN

The reference configuration is the same as before. It is supposed that through an uniaxial compression
is obtained an axial strain which is conserved constant

const.11 =ε=ε o (5.1)

The test being unconfined
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It will be determined the evolution in time of the axial stress 1σ  and the radial strain 32 ε=ε .
The initial conditions are obtained through instantaneous response
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For the linear viscoelastic model, the differential equations for this deformation process are
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The general solution of this system of differential equations is
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where 21, λλ  are the real negative roots (for proof, see [2]) of the characteristic polynomial
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the constants 2121 ,,, BBAA  the roots of the algebric system formed from the initial conditions and the
relations existing among these constants
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For the linear viscoelastic model, there exist the limits
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For the Cristescu´s elasto/viscoplastic model, the deformation process under constant axial strain is
described by
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The final value of ( )t
t 11 lim σ=σ

∞→
∞  is root of the algebric equation
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concretely, this value is the real positive root, close by o
1σ  and smaller than this. In the numerical integration

of the system (5.10), it must be taken into account the position of o
1ε  with respect to the critical value
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   We mention that in the integration of differential equation system for both constitutive models it must take
care of the H expresion with respect of  σ values.
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