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PIVOT FRICTION IN PLANAR MOTIONS
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This paper presents an anallysis of a frictional planar rigid-body motion. Friction occurs on the
contact area between the rigid body and the bearing horizontal plane producing a resultant friction
force and a pivot friction moment. The general solution depends on four distinct integrals. In the case
of a circular contour only two integrals remain which result in closed forms. Their evaluation is made
through an integral representation for the reciprocal distance between two points. The solution of the
planar circular disk motion with friction is checked against known results on particular motions.
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1. INTRODUCTION

In most dynamics texts contact between two rigid bodies is admitted at one point. Constraints at this
contact point generally produce a normal reaction force, a friction force, a rolling friction moment and a
pivot friction moment [1], [3]. Motions of a circular disc in contact with a horizontal plane and a slope [3]
are outstanding examples of this kind. But what happens when the contact between two moving bodies
occurs not at a point, but on a surface? How do we evaluate the friction forces that appear on the contact
area? In planar motions with friction on the bearing surface a resultant friction force and a pivot friction
moment are produced. This paper deals with the frictional planar motion of a flat plate on the horizontal free
surface of a half-space. Most equations presented are those commonly found in dynamics texts in one form
or another. We are not aware of a similar problem treated in the literature.

2. FORMULATION OF THE PROBLEM FOR A FLAT PLATE OF ARBITRARY CONTOUR

Consider a flat plate of arbitrary contour performing a planar motion in the plane defined by the axes
O,x, and O, y, of the fixed frame of reference O,x,y,z, , unit vectors 7, j,, /El . The plate is loaded with an
uniform normal pressure y on the domain of contact D with the plane z, = 0. Its motion is opposed by
coulombian friction of coefficient L. Let O be the center of mass of the plate and (xo, Vo O) its co-
ordinates in the fixed frame O,x,y,z,. Let O x y z be the frame of reference attached to the moving plate,
unit vectors i, J, k = lgl , with the axes Ox and Oy in the plane of motion. The angle ) measures the
rotation of the moving frame of reference with respect to the fixed one, figure 1.

Let 1, be the torsor about point O of the directly applied force system 17“[ Ji=1n, acting on the
plane z, = 0 at the points 4, ,i = I,_n and T, the torsor about the same point of the friction forces. If v is

the velocity of the current point M (Cartesian co-ordinates x and y) and do the area element on the
moving plate, figure 2, then:
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Fig.1 Flat plate in planar motion.
Fig.2 Geometry related to frictional planar motion.
The equations of motion of the plate are:
mv, = R+F, ; Jow= M, +M,,. 2)

Here we identify m as the mass of the plate, J,, as its central moment of inertia, v, as the velocity of point

O and W as the angular velocity of the plate (w = ). Integration of the differential equations (2) requires

for the integrals defined in (1) at least a form suitable for numerical evaluation.
Let us first note that v and v can be written as

V=9, +OX7F , v=wlM, 3)

I being the instant rotation centre of the plate. The integrals in (1) become
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J;I%doz%ﬂ’gido+l€1x‘[)%do,
7 %: Vo J'—d0+k Dﬂ'—dcr
D

The positions of points / and M will be represented by the polar co-ordinates (p, ¢) and (r, 9)

(4)

respectively. F, and M ,, can be consequently expressed by means of four independent integrals:

1 2 o(6) rdrdo

p ¢ J].Wdo IJ‘\/p +r? 2prcos(¢ 9)

21 a(e)

r? cosOdrdo
L.(p.9) ‘Uﬂdo II\/p + 72 —2prcos(®p - 6)

27 a(e)

r? sin O dr do
zy p q) J.I IM do = J. .r \/p + r 2pl" COS((I) e)

()

21 a(e)

r? dr do
15(p.0) deo II\/p +72 = 2prcos(® - 6)

r= a(e) being the equation of the boundary of D in polar co-ordinates.
The following equations slightly modified from [4]

pcos¢=%sinw—%}cosw , psin¢=%c0sw+%}sinw, (6)

link the co-ordinates of / in the moving frame to the velocity of O and the angular velocity of the plate.
The expressions of the resultant friction force and of the resultant friction moment are

F, =-ayp,(p. 0)sin(0 + W)~ 1,,(p. ¢)sin g~ 1, (p. ¢)cos w|T, +

+ay o1, (o, 6)cos(® + W) - 1., (o, d)cosw + 1, (0, ¢)sin W] T, , o

Mo = -y, ¢) -l (0. 0)cosd + 1., (0. ¢)sin o}

The equations of motion (2) in the fixed frame of reference result as

mi, = X —uyl:l_p]l(p, ¢)sin(l|) +¢)—]2x(p, q))sinljJ —Izy(p, ¢)cosljJ],
mio =Y +uy o 1,(p, ¢)cos(W +6) = 1. (o, ¢)cosw +1,,(p, ¢)sin w], ®)

Job =M, —pyQL, ¢)- el (o, ¢)cosd +1,,(p, ¢)sin o,

and they can be integrated numerically in arbitrary initial conditions along with the equations (6).
The kinetic energy lost instantaneously by the moving plate due to friction is

P, :_(‘70 Daf +G)U‘;[fo):“y¢ [{pzll(pa ¢)_
=200, )eoso+1,(p. @)sing]+1,(p. O}=pyrffirt do )

and results from (5), (6), (7) and (8) along with the values of x,, v, ,{,p,¢.
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3. CLOSED FORM SOLUTION FOR THE CIRCULAR DISK.

For a circular plate of radius a the integrals (5) can be evaluated in closed forms. The approach is
through the integral representation for the reciprocal distance between two points [5]:

2
() 7\%, ¢—9E
1 TE pr e du (10)

1+¢ COST I Ire "
[p2 +r2 = 2pr cos(® —e)]T ’ [(p2 —uz)(r2 —uz)] ’
with 0 <€ <1 and

=R

)= minp.r)= L +p-p-p] = - TSP

P > pSrSa’ (1D

1-k?
Ak, a)= .
( ) 1+k%-2kcosa (12)

1 T o

2
\/p2 +r2 =2prcos(®-6) T ‘Or Jo? —u2 )2 -

For € = 0 we have

3.1. Evaluation of integral Il(p, ¢)

Substitution of (13) into the first integral (5) yields after changing the order of integration (appendix 1)

o) E”»cb BE

I(p¢——'rd9j’rdrj’\/ T _u)du—

%m‘(([ \/p - u? j’\/r”iru fh%,q)—e%r.

The first iterate integral (see appendix 2) is L, (u2 Jor, ¢) = 2T so that the result depends only of p:

(14)

EﬂaEBzH if p<a

Il(psq)):Il p :4I —d”:E 0 2 ’ (15)
0 P -u? O - [} =a
P 94‘)["55%%’%2 IEI%%“V

where

_2 dt _nE < dep —1)HD2 = g
K(k)_.([——zg ZW Lk E, 0<k<l, (16)
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ey 10| 5

E(k) =

i -1 2
\/1—kzsin2tdt=g%— E(2p 1)"§ka %, 0<k<l,
8 ' H

stand for Legendre’s elliptical integrals [6].
3.2. Evaluation of integrals 7, (p, ¢) and 7,,(p, ¢)
Introduce the complex (i 2= —1) integral:
2
m(r A ,$-6
L, ) EF ¢ E

6:0)= 1o, )+ih . )= fertddf i [ —pz:zxrz =)

0

du =

m(a) a 2 21 2
2 du redr )
== A ,0 - 0% d0.
T e | Epr ! %

From appendix 2 the first iterate integral results as L, (u2 Jpr, d)) = 2me® u?/pr . Therefore

I5(p.0)=e® 0, (p) ,

where
O
oy Hed i e<a
LP)=5e.0)=- [ —F—w=0 ,
P3P -u QTE%E if p2a
Hp
with

SR

>
B()= [sin® (N1~ k7 sin” r dr . c(k):IMdt . 0sksl.
0

0

In order to compute integrals B (k) andC (k) we introduce a new elliptical integral:

Alk) =

cos?tl—k?sin¢tdt , 0<k<l1.

S e

Note that

Alk)+ B(k) = E(k) , a(k)- BK)= k> c(k), %A(k) = —kC(k).

Therefore A(k) satisfies the first order linear differential equation

D)+ 2 ar) =

dk k FE).

whose general solution is

(17)

(18)

(19)

(20)

1)

(22)

(23)
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c 1
AlR) =5+ o [0+ 02)EG) - (- 12 ) )] 4)
¢ being an arbitrary constant. As A(l) = 2/3 itresults ¢ = 0. Consequently we have
Alk) = 3]%2[(1 +12)E(k)- (-2 )k (k)] . B{K)=

Lz k2 - 1E®K)+ (- %2 )k (k)] |

(25)
20 - #2 )k (k)
=mw4,B01)=c@)=13,c(0)=

= 1716 . Finally we have

c(k):y%[(z—k (k) -

It can be easily cheched that A(O) = B(O)

07 4 . ’ (20
%“EEZ‘FEDE%E‘Z ‘?EW%% rhza

27)
3.3. Evaluation of integral 13(p, ¢)

It follows form the substitution of (13) into the last integral (5) and the change of order of integration
that

:M w,m%”_;; i a-

(28)

Note that in the case of the circular disk 7, (p, (I)) is not independent, but a combination of / (p) and / (p)

3.4. Resultant friction force, pivot friction moment, equations of motion, energy loss through friction

Substitution of (27) and (28) into (7), (8) and (9) provide the following compact forms for
1. The resultant friction force (F '+ Opposes V)

ﬁf :_UY[[pll(p)_[2(p)]D:i (29)
0
2. The pivot friction moment:

1 _
Mo ==3Hy a1, (0) - 1, (o) ;.
3. The equations of motion:

(30)
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miy = X —py o 1,(0) - 1,(p) B —o—

b
[:2 )
xXo Yo

mi, =¥ —py dp 1, (p) - 1, ()] -=2o— 31)

b
[22 | <2
Xo t Yo

Jo =M, _%HVE[azh(p)_pIz(p)]'

Note that the first two motion equations are similar to those studied in [2], page 28. However, they are
more general and their integration can be done only numerically. A prime integral, ¢ +¢ = Y, + ¢,

(W, and ¢, being the initial values of the angles Y and ¢ ), existsonlyif X =Y =0.
4. The energy loss through friction:

2 O
P, =y E%: +CH o) - o, k& 32)

3.5. Particular cases.

It is of interest to see if the solutions obtained in the previous paragraphs are checked against known
results.
1. The disk rotates about its centre of mass. In this case instant centre / overlaps point O (p = O).

. . 2
lim 7, (p) = 21@ , })1{1’(1)[2(()): 0, F, =0, M,, = 5pym3 , P =M, (33)

p-0

2. The disk translates in the direction of v,.Inthiscase p - © , Y - 0 , pP =v,.

lim 7,(p)=0 , lim pf, (p) = T2, lim 7,(p)=0 , lim p, (p) = 0,
P peo P pooo

) (34)
F,=wm* , M, =0, P, =v,F,.

4. SUMMARY AND CONCLUSIONS

This paper derives solutions for frictional planar rigid-body motions when friction occurs on the whole
contact area between the body and the bearing surface. For a plate of arbitrary contour the solution includes
four independent integrals which have to be evaluated numerically. For a circular disk there are only two
independent integrals which result in closed forms of Legendre’s elliptical integrals. The values of the
resultant friction force and of the pivot friction moment are checked against known results on particular
cases of motion: central rotation and translation. The problem of the frictional planar motion itself appears to
be new.
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APPENDIX 1.

Domains of integration related to integrals 7, (p, ¢), 75(0, ¢), 7,(p, ¢);
Change of order of integration

Computation of integrals given at (14), (17) and (28) requires changes of order of integration. The
shaded areas in the figure below represent the domains of integration. If f (u , r) is an arbitrary integrable
function on these domains then in both cases it results that

j’ Hn’(rr)f(u , r)du %r = mfa)Ej’f(u, r)dr %u .

r=0 =0

=]
Ol---L--
Q

=]

Q

Two-dimensional domains of integration

Casel. p<a, mlr)

I}
o

P [P P [Ja pm()
:uzogjf(u,r)dr%u+uj' Ejz'f(u,r)dr u J' BIfu r)dr%u

Casell. p=a, m(r)Za.

= e

r=0 =0
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APPENDIX 2.

Evaluation of integral L, (k, ¢) , nON;

2n

L (k, )= I)\(k, b -0)edd , nON

Function 7\(k , 0() has been defined at (12). With the change of variable { = ¢/®~%) the integral can be
computed as a complex integral along the unit circle:

n

- ) ind
Lk 0)=ifl-k2)e A’zlzzk—Z(l+k2)+kdz'

The roots of the equation sz—Z(1+k2)+k =0are {, =k, (, =

If |k| <1 then

n

, O O
Lk, ¢)=i( -k2)em 2mReZEi2k—Z(l+k2)+k’ kg:

O
& .
TR

= om(] - k2 )eint Qim 2 - )

[ =

If |k| > 1 then

X
0
= —2n{l - k?)e Olim % -
“ig
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