
      THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,
      OF THE ROMANIAN ACADEMY                                                                                   Volume 5, Number 3/2004, pp. 000-000

_________________________________
Recommended by Radu P.VOINEA, member of the Romanian Academy

PIVOT FRICTION IN PLANAR MOTIONS

Victor BURACU*, Aurel ALECU *

* Department of Mechanics, University “Politehnica” of Bucharest – Splaiul Independentei, 313, sector 6, Bucharest, Romania
Corresponding author:Victor BURACU, E-mail: vburacu@yahoo.com

This paper presents an anallysis of a frictional planar rigid-body motion. Friction occurs on the
contact area between the rigid body and the bearing horizontal plane producing a resultant friction
force and a pivot friction moment. The general solution depends on four distinct integrals. In the case
of a circular contour only two integrals remain which result in closed forms. Their evaluation is made
through an integral representation for the reciprocal distance between two points. The solution of the
planar circular disk motion with friction is checked against known results on particular motions.
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1. INTRODUCTION

In most dynamics texts contact between two rigid bodies is admitted at one point. Constraints at this
contact point generally produce a normal reaction force, a friction force, a rolling friction moment and a
pivot friction moment [1], [3]. Motions of a circular disc in contact with a horizontal plane and a slope [3]
are outstanding examples of this kind. But what happens when the contact between two moving bodies
occurs not at a point, but on a surface? How do we evaluate the friction forces that appear on the contact
area? In planar motions with friction on the bearing surface a resultant friction force and a pivot friction
moment are produced. This paper deals with the frictional planar motion of a flat plate on the horizontal free
surface of a half-space. Most equations presented are those commonly found in dynamics texts in one form
or another. We are not aware of a similar problem treated in the literature.

2. FORMULATION OF THE PROBLEM FOR A FLAT PLATE OF ARBITRARY CONTOUR

Consider a flat plate of arbitrary contour performing a planar motion in the plane defined by the axes

11xO  and 11 yO  of the fixed frame of reference 1111 zyxO , unit vectors 1i
!

, 1j
!

, 1k
!

. The plate is loaded with an
uniform normal pressure γ  on the domain of contact D  with the plane 01 =z . Its motion is opposed by
coulombian friction of coefficient µ . Let O  be the center of mass of the plate and ( )0,, 00 yx  its co-
ordinates in the fixed frame 1111 zyxO . Let zyxO  be the frame of reference attached to the moving plate,
unit vectors i

!
, j
!

, 1kk
!!

= , with the axes Ox  and Oy  in the plane of motion. The angle ψ  measures the
rotation of the moving frame of reference with respect to the fixed one, figure 1.

Let Oτ  be the torsor about point O  of the directly applied force system niFi ,1, =
!

, acting on the
plane 01 =z  at the points niAi ,1, =  and Ofτ  the torsor about the same point of the friction forces. If v!  is
the velocity of the current point M  (Cartesian co-ordinates x  and y ) and σd  the area element on the
moving plate, figure 2, then:
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Fig.1 Flat plate in planar motion.

Fig.2 Geometry related to frictional planar motion.

The equations of motion of the plate are:

OfOOfO MMJFRvm
!!"!!!"! +=ω+= ; . (2)

Here we identify m  as the mass of the plate, OJ  as its central moment of inertia, Ov!  as the velocity of point
O  and ω

!
 as the angular velocity of the plate ( ψ=ω " ). Integration of the differential equations (2) requires

for the integrals defined in (1) at least a form suitable for numerical evaluation.
Let us first note that v!  and v can be written as

IMvrvv O ⋅ω=×ω+= ,
!!!! , (3)

I  being the instant rotation centre of the plate. The integrals in (1) become
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The positions of points I  and M  will be represented by the polar co-ordinates ( )ϕρ ,  and ( )θ,r
respectively. fF  and OfM  can be consequently expressed by means of four independent integrals:

( )
( )

( )

∫ ∫∫∫
π θ

θ−ϕρ−+ρ

θ=σ=ϕρ
2

0 0
221

cos2
1,

a

D rr
ddrrd

IM
I ,

( )
( )

( )

∫ ∫∫∫
π θ

θ−ϕρ−+ρ

θθ=σ=ϕρ
2

0 0
22

2

2
cos2

cos,
a

D
x

rr
ddrrd

IM
xI ,

( )
( )

( )

∫ ∫∫∫
π θ

θ−ϕρ−+ρ

θθ=σ=ϕρ
2

0 0
22

2

2
cos2

sin,
a

D
y

rr
ddrrd

IM
yI ,

( )
( )

( )

∫ ∫∫∫
π θ

θ−ϕρ−+ρ

θ=σ=ϕρ
2

0 0
22

32

3
cos2

,
a

D rr
ddrrd

IM
rI ,

(5)

( )θ= ar  being the equation of the boundary of D  in polar co-ordinates.
The following equations slightly modified from [4]

ψ
ψ

−ψ
ψ

=ϕρ cossincos
"
"

"
" OO yx

  ,   ψ
ψ

+ψ
ψ

=ϕρ sincossin
"
"

"
" OO yx

, (6)

link the co-ordinates of I  in the moving frame to the velocity of O  and the angular velocity of the plate.
The expressions of the resultant friction force and of the resultant friction moment are

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ] ,sin,cos,cos,

cos,sin,sin,

1221

1221

jIII

iIIIF

yx

yxf
!

!!

⋅ψϕρ+ψϕρ−ψ+ϕϕρρ⋅µγ+

+⋅ψϕρ−ψϕρ−ψ+ϕϕρρ⋅µγ−=

( ) ( ) ( )[ ]{ } 1223 sin,cos,, kIIIM yxOf

!!
⋅ϕϕρ+ϕϕρρ−ϕρ⋅µγ−= .

(7)

The equations of motion (2) in the fixed frame of reference result as

( ) ( ) ( ) ( )[ ]ψϕρ−ψϕρ−ϕ+ψϕρρ⋅µγ−= cos,sin,sin, 221 yxO IIIXxm "" ,

( ) ( ) ( ) ( )[ ]ψϕρ+ψϕρ−ϕ+ψϕρρ⋅µγ+= sin,cos,cos, 221 yxO IIIYym "" ,

( ) ( ) ( )[ ]{ }ϕϕρ+ϕϕρρ−ϕρ⋅µγ−=ψ sin,cos,, 223 yxOO IIIMJ "" ,

(8)

and they can be integrated numerically in arbitrary initial conditions along with the equations (6).
The kinetic energy lost instantaneously by the moving plate due to friction is

( ) ( ){
( ) ( )[ ] ( )} ∫∫ σ⋅ψµγ=ϕρ+ϕϕρ+ϕϕρρ−

−ϕρρ⋅ψµγ=⋅ω+⋅−=

D
yx

fOfOf

dIMIII

IMFvP

"

"
!!!!

,sin,cos,2

,

322

1
2

(9)

and results from (5), (6), (7) and (8) along with the values of ϕρψ ,,,, OO yx .
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3. CLOSED FORM SOLUTION FOR THE CIRCULAR DISK.

For a circular plate of radius a  the integrals (5) can be evaluated in closed forms. The approach is
through the integral representation for the reciprocal distance between two points [5]:

( )[ ] ( )( )[ ]

( )

∫ ε
ε+ ε+

−−ρ







θ−ϕ

ρ
λ

επ
π

=
θ−ϕρ−+ρ

rm

duu

uru

r
u

rr 0 2222

2

2
1

22 2
1

,

2
cos2

cos2

1 (10)

with 10 <ε≤  and

( ) ( ) [ ]




≤≤ρρ
ρ<

=ρ−−ρ+=ρ=
ar

rr
rrrrm

,
,

2
1,min  , (11)

( )
α−+

−=αλ
cos21

1,
2

2

kk
kk  . (12)

For 0=ε we have

( ) ( )( )
( )

∫ −−ρ





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θ−ϕ

ρ
λ

π
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θ−ϕρ−+ρ

rm
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r
u

rr 0
2222

2

22

,
2

cos2
1 . (13)

3.1. Evaluation of integral ( )ϕρ ,1I

Substitution of (13) into the first integral (5) yields after changing the order of integration (appendix 1)

( )
( )( )

( )
=

−−ρ







θ−ϕ

ρ
λ

θ
π

=ϕρ ∫ ∫ ∫
π2

0 0 0
2222

2

1

,
2,

a rm

du
uru

r
u

drrdI

( )
.,2 2

0

2

22
0

22 ∫∫∫
π







θ−ϕ

ρ
λ

−−ρπ
= dr

r
u

ur
drr

u
du a

u

am
(14)

The first iterate integral (see appendix 2) is ( ) π=ϕρ 2,2
0 ruL  so that the result depends only of ρ :

( ) ( )
( )
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
ρ

⋅ρ

<ρ




 ρ⋅

=
−ρ

−=ρ=ϕρ ∫
aifaKaaE

aif
a

Ea
du

u

uaII
am

14

4
4,

2

2
0

22

22

11
     , (15)

where

( ) ( )
( ) 10,

!!2
!!121

2sin1 1

2
22

0
22

<≤












⋅






 −
+π=

−
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∞

=

π

kk
p

p
tk

dtkK
p

p , (16)
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stand for Legendre’s elliptical integrals [6].

3.2. Evaluation of integrals ( )ϕρ ,2xI  and ( )ϕρ ,2 yI

Introduce the complex ( )12 −=i  integral:

( ) ( ) ( )
( )( )
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From appendix 2 the first iterate integral results as ( ) rueruL i ρπ=ϕρ ϕ 22
1 2, . Therefore

( ) ( )ρ⋅=ϕρ ϕ
22 , IeI ic  , (18)

where

( ) ( )
( )










≥ρ





ρ

⋅
ρ

<ρ




 ρ⋅ρ
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=ϕρ=ρ ∫
aifaCa

aif
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c

2
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222
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4

4
4, (19)

with

( ) ( ) .10,
sin1

cossin,sin1sin
2

0
22

222

0

222 ≤≤
−

=−= ∫∫
ππ

ktd
tk

ttkCdttktkB (20)

In order to compute integrals ( )kB  and ( )kC  we introduce a new elliptical integral:

( ) 10,sin1cos
2

0

222 ≤≤−= ∫
π

kdttktkA  . (21)

Note that

( ) ( ) ( )kEkBkA =+  ,  ( ) ( ) ( )kCkkBkA 2=−  ,  ( ) ( )kkCkA
dk
d −= . (22)

Therefore ( )kA  satisfies the first order linear differential equation

( ) ( ) ( )kE
k

kA
k

kA
dk
d 12 =+ , (23)

whose general solution is
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( ) ( ) ( ) ( ) ( )[ ]kKkkEk
kk

ckA 22
22

11
3

1 −−++= , (24)

c  being an arbitrary constant. As ( ) 321 =A  it results 0=c . Consequently we have

( ) ( ) ( ) ( ) ( )[ ]kKkkEk
k

kA 22
2

11
3

1 −−+=    ,   ( ) ( ) ( ) ( ) ( )[ ]kKkkEk
k

kB 22
2

112
3

1 −+−=   ,

( ) ( ) ( ) ( ) ( )[ ]kKkkEk
k

kC 22
4

122
3

1 −−−= .
(25)

It can be easily cheched that ( ) ( ) ( ) ( ) ( ) .C,CB,BA 1603111400 π===π==  Finally we have
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   , (26)

( ) ( ) ( ) ( ) ϕ⋅ρ=ϕρϕ⋅ρ=ϕρ sin,,cos, 2222 IIII yx   . (27)

3.3. Evaluation of integral ( )ϕρ ,3I

It follows form the substitution of (13) into the last integral (5) and the change of order of integration
that
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(28)

Note that in the case of the circular disk ( )ϕρ ,3I  is not independent, but a combination of ( )ρ1I  and ( )ρ2I .

3.4. Resultant friction force, pivot friction moment, equations of motion, energy loss through friction.
Substitution of (27) and (28) into (7), (8) and (9) provide the following compact forms for:

1. The resultant friction force ( fF
!

 opposes Ov! ):

( ) ( )[ ]
O

O
f v

v
IIF

!!
⋅ρ−ρρ⋅µγ−= 21 . (29)

2. The pivot friction moment:

( ) ( )[ ] 121
2

3
1 kIIaM Of

!!
⋅ρρ−ρ⋅µγ−= . (30)

3. The equations of motion:
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( ) ( )[ ]
2221
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yx

x
IIXxm

""
"

""
+

⋅ρ−ρρ⋅µγ−= ,

( ) ( )[ ]
2221
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O
O

yx
y

IIYym
""

"
""

+
⋅ρ−ρρ⋅µγ−= ,

( ) ( )[ ]ρρ−ρ⋅µγ−=ψ 21
2

3
1 IIaMJ OO "" .

(31)

Note that the first two motion equations are similar to those studied in [2], page 28. However, they are
more general and their integration can be done only numerically. A prime integral, 00 ϕ+ψ=ϕ+ψ
( 0ψ  and 0ϕ  being the initial values of the angles ψ  and ϕ ), exists only if 0== YX .

4. The energy loss through friction:

( ) ( )







ρρ−ρ



 +ρ⋅ψµγ= 21

2
2

3
4

3
IIaPf " . (32)

3.5. Particular cases.

It is of interest to see if the solutions obtained in the previous paragraphs are checked against known
results.
1. The disk rotates about its centre of mass. In this case instant centre I  overlaps point ( )0=ρO .

( ) ( ) 0lim,2lim 2010
=ρπ=ρ

→ρ→ρ
IaI ,   OffOff MPaMF ψ=µγπ== ",

3
2,0 3 . (33)

2. The disk translates in the direction of Ov! . In this case Ov=ψρ→ψ∞→ρ "" ,0, .

( ) ( ) ( ) ( )
.,0,

,0lim,0lim,lim,0lim

2

22
2

11

fOfOff FvPMaF

IIaII

==µγπ=

=ρρ=ρπ=ρρ=ρ
∞→ρ∞→ρ∞→ρ∞→ρ (34)

4. SUMMARY AND CONCLUSIONS

This paper derives solutions for frictional planar rigid-body motions when friction occurs on the whole
contact area between the body and the bearing surface. For a plate of arbitrary contour the solution includes
four independent integrals which have to be evaluated numerically. For a circular disk there are only two
independent integrals which result in closed forms of Legendre’s elliptical integrals. The values of the
resultant friction force and of the pivot friction moment are checked against known results on particular
cases of motion: central rotation and translation. The problem of the frictional planar motion itself appears to
be new.
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APPENDIX 1.

Domains of integration related to integrals ( ) ( ) ( )ϕρϕρϕρ ,,,,, 321 III c ;
Change of order of integration

Computation of integrals given at (14), (17) and (28) requires changes of order of integration. The
shaded areas in the figure below represent the domains of integration. If ( )ruf ,  is an arbitrary integrable
function on these domains then in both cases it results that
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APPENDIX 2.

Evaluation of integral ( ) NnkLn ∈ϕ ,, ;

( ) ( ) NndekkL in
n ∈θθ−ϕλ=ϕ θ

π

∫ ,,,
2

0

Function ( )αλ ,k  has been defined at (12). With the change of variable ( )ϕ−θ=ζ ie  the integral can be
computed as a complex integral along the unit circle:

( ) ( ) ( ) ζ
++ζ−ζ

ζ−=ϕ ∫
=ζ

ϕ d
kkk

ekikL
n

in
n

1
22

2

1
1, .

The roots of the equation ( ) 01 22 =++ζ−ζ kkk  are  
k

k 1, 21 =ζ=ζ .

If 1<k  then

( ) ( ) ( )

( ) ( )
( )

.2
1

lim12

,
1

Re21,

2

22
2

nin
n

k
in

n
in

n

ke

k
kk

kek

k
kkk

ziekikL

ϕ
→ζ

ϕ

ϕ

π=
























 −ζ−ζ

ζ−ζ⋅−π−=

=








++ζ−ζ
ζπ−=ϕ

If 1>k  then

( ) ( ) ( )

( )
( )

.12
1

1lim12

1,
1

Re21,

1
2

22
2

n
in

n

k

in

n
in

n

k
e

k
kkk

ek

kkkk
ziekikL

ϕ

→ζ

ϕ

ϕ

π−=
























 −ζ−ζ

ζ





 −ζ⋅−π−=

=








++ζ−ζ
ζπ−=ϕ
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