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Value Prediction (VP) is a relatively recent developed processing technique. Its main aim is to early
predict the instructions’ results, during their fetch or decode pipeline stages, and, therefore, to
speculatively execute the instruction flow. The predicted value can then be used as an input to some
subsequent dependent instructions so that they can execute earlier. If the prediction is incorrect,
recovery mechanism must be employed to squash speculative results and re-execute all instructions
that used the incorrectly predicted values. Through this paper we briefly presented this emergent
paradigm and we investigated the value locality degree present in real-world programs, and extended
the value locality and prediction concepts to all general-purpose registers (MIPS architecture). As a
consequence, the encouraging obtained results facilitates implementation of much simpler prediction
structures, significantly reducing the hardware cost and complexity.

Key words: advanced computer architectures, value locality, dynamic instruction value prediction,
simulation, benchmarking.

1. INTRODUCTION

According to [15], Value Locality represents a third facet of the statistical locality concepts used in
computer engineering (close by the well known, and used, temporal and spatial locality concepts). Value
Locality means the statistical probability to produce a value belonging to the previous k value instruction’s
instances. The concept is strongly related with the redundant computing concepts including here the
relatively recently introduced Dynamic Instruction Reuse techniques [25].

In my opinion, the main difference between temporal and spatial locality and, respectively, value
locality consists in the fact that the first two metrics are focused on item’s (data’s or instruction’s) address
rather than on the instruction’s result. More precisely, temporal locality means a significant probability that
the current accessed memory address to be accessed again in the nearest future. Value locality means a bit
more: the fetched instruction will produce a result belonging to the previous instances, with a significant
probability, too. Therefore, it appears that value locality is a consequence of temporal locality. Obviously,
value locality might be exploited through value prediction. Measurements using SPEC benchmarks show
that value locality on Load instructions is about 50% using a history of one (producing the same value like
the previous one) respectively 80%, using a history of 16 previous instances. The value locality can be
exploited to bypass the redundant operation through value prediction or dynamic instruction reuse. This is
especially beneficial when the operations that are on the critical path can be skipped [30].

2. GENERALISED VALUE PREDICTION

In [21] the authors developed an empirical practical classification related to the generated instruction
values. According to them, there are 3 distinct types of instruction values: constant, incremental and non-
incremental. Of course, we can imagine also some hybrid classes, based on these 3 main classes. Also, we
can consider repetitive and, respectively, non-repetitive sequence values.
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These classes involve at least two distinct main categories of predictors: computational and contextual.
Computational predictors are predicting based on some previous values in a computational manner,
therefore according to a deterministic recurrence formula. An incremental predictor belongs to the
computational class. As it can be easy observed, a computational predictor doesn’t directly derive from the
value locality concept. A contextual predictor predicts the next value based on a particular stored pattern
(context) that is repetitively generated in the value sequence. Theoretically contextual predictors can predict
any repetitive sequences. A context predictor is of order k if its context information includes the last k values,
and, therefore, the search is done using this pattern of k values length [30].

Computational Predictors
We’ll briefly present here only the incremental predictors, the most used belonging to the

computational class. Considering that vn-1 and vn-2 are the last generated values, the new value vn will be
calculated using the formula: vn = vn-1 + (vn-1 - vn-2), where (vn-1 - vn-2) is the stride. Of course, the stride might
be variable in time (constant only for some “real-time” periods). The stored stride is modified based on a
confidence mechanism. The corresponding confidence counter is incremented/decremented according to the
prediction result, respectively (correct/incorrect). Another hysteresis strategy is the so called “2 – delta”
method. In this case there are stored two strides (s1 and s2), s1 = vn –vn-1. Stride s2 is currently used in the
prediction process. Only when the same value is generated two times consecutively, it is done the transfer
s2 ← s1. In the case of repetitive incremental sequences, both strategies reduced the number of wrong
predictions from two, to one.

Contextual Predictors
In this case the prediction will be done based on the most frequent values that follow a pattern context

in the string of history values. An important contextual predictor class implements, with some
simplifications, the general “Prediction by Partial Matching” (PPM) algorithm (used also in speech
recognition, data compression, etc.). PPM works on a set of (k+1) Markov predictors of order k, k-1, k-
2,…,2, 1 ,0 [18]. A Markov predictor might be represented by a graph of states and transitions between
states. Each transition from state X to state Y in the corresponding graph has assigned a weight representing
the fraction of all X references that are followed by a reference Y. Obviously, the sum of weights belonging
to a certain state must be equal to 1 (normalisation equation). If the predictor of order k can’t predict
anything, it will be used the predictor of order (k-1) and so on, up to the 0th order predictor.

It’s obvious that for any value sequence that can be generated through an algorithm, we can develop a
corresponding predictor that will correctly predict the next value. Considering, for example, a loop that
calculates Fibonacci’s recurrent string (vn = vn-1 + vn-2), it must be activated a corresponding hardware
predictor, implemented by the previous formula. Unfortunately, it is not possible to predict non-repetitive
and non-stride value sequences generated by some algorithms under the present-day VP paradigm (mainly
consisting in hardware prediction structures accessed by information derived from the object code). In order
to predict these difficult sequences, perhaps it’s needed a new hardware-software interface implemented
through a new Instruction Set Architecture - ISA. In other words, the compiler must transmit to the predictor,
through the ISA, some High Level Language (HLL) semantic information, related to the HLL processed
structures and processed application. Unfortunately, in the present-day approach, after compilation, the
resulted object code, lose almost all of the HLL semantics. Therefore I believe it is strongly needed a
semantic predictor based on a new code generation paradigm, on a new hardware-software interface that
will include more HLL application semantics. This will be an important further challenge in dynamic VP
domain.

Two Level Adaptive Value Predictors

Some authors proposed – through an analogy with the well-known Two Level Adaptive Branch
Predictors [33] – some Two Level Adaptive Value Predictors [31]. The scheme presented in figure 1 stores
in the first level (Value History Table - VHT) the last 4 values per each dynamic instruction. A selection
mechanism might choose one of these 4 values as the predicted value. These 4 values are binary codified
{00, 01, 10, 11}. While an instruction produces one of the 4 stored values, eventually one of these values
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will be predicted. Otherwise, the new produced value will be introduced in VHT and another value
belonging to VHT will be evacuated (ex. through a LRU algorithm).

Figure 1. A Two Level Adaptive Value Predictor.

The VHP (Value History Pattern) field belonging to the VHT stores a binary pattern on 2p bits. This
pattern codes the last p results generated by that instruction (each result is coded using two bits). VHP will
update like a shift logic left register, according to the corresponded predicted value. The VHP field address
the PHT table (Pattern History Table). A PHT line contains 4 independent saturated counters (C0, C1, C2,
C3). If the current instruction produces the value associated with the counter CK, (k=0,1,2,3) belonging to the
corresponding PHT line, then CK is incremented (+3), and, the other 3 counters are decremented (-1). The
MAX circuit works as follows: if MAX (C0, C1, C2, C3) = CK and CK >= A, where A is a certain threshold,
then MAX circuit generates the binary value of K, codified on 2 bits. Otherwise, if CK < A, it will be not
generated any prediction (CK value associated with the VHP pattern hasn’t a sufficient higher frequency). It
can be observed that – through the proposed codification mechanism - VHP index represents a compressed
CPU context. This involves reasonable PHT capacities.

The scheme presented in figure 1 represents a simplified feasible implementation of the PPM generic
predictor. Each instruction has associated its own context stored in VHT, representing the last p binary
codified values produced by this instruction (VHP pattern). Using this pattern, the Two Level Predictor
calculates – using C0 to C3 counters – the most frequent generated value in the last p instances of the
instruction. Now it’s clear why this predictor belongs to the most general PPM contextual predictor,
previously described. On the other hand, someone might answer: why the VHT structure stores only the last
4 instruction’s values? There is a statistical explanation: 15% - 45% from the instructions produce only one
value in their last 16 dynamic instances and 28% - 67% produce maximum 4 distinct values considering their
last 16 instances.

A particular type of predictor predicts some instruction values better than other types. Therefore, the
hybrid prediction idea seems to be very natural in order to obtain the optimal trade-off and synergism, too.
That means two or many predictors working together, selected in a dynamic adaptive manner [31].

3. SOME RESULTS OBTAINED THROUGH SIMULATION

We are presenting now some simulation results obtained using a dedicated simulator developed at
University “L. Blaga” of Sibiu. All the simulations used SimpleScalar Tool ver. 3.0 and SPEC benchmarks
[1], [27]. There were simulated 5.000.000 dynamic instructions for each SPEC benchmark. We performed
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several experiments to evaluate the value locality exhibited by MIPS CPU integer registers (unstudied until
now as far as we know). Based on this, we further developed some predictors associated with the favourable
registers (having important value locality degree). As it can be seen, these predictors are inspired from those
described in the previous paragraph.
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Figure 2. Value Locality from a Register Centric Point of View (MIPS Processor).

Figure 2 presents some value locality degrees centred on MIPS CPU registers. As far as we know this
is the first value locality measurement centred on general processor registers. As it can be observed, the
value locality degree is high for some registers. Taking into account the simulated MIPS CPU architecture,
some possible qualitative explanations are:

•  $at register is frequently used in data memory address in order to access some data structures.

•  $sp (29) register is the MIPS stack pointer and, thus, it has little variations.

•  $fp (30) is the frame pointer register.

•  $ra (31) stores the return address for a jal (jump and link) instruction. There are few calling points
in SPEC benchmarks.

These results encouraged us in implementing a small predictor centred on the registers rather than on
the instructions, with some important cost / complexity advantages [10]. The predictor’s table has only 32
value predictors instead of thousands of predictors required by the instruction centric paradigm. Figure 3
presents the prediction value accuracies obtained through a hybrid predictor (PPM & Incremental).
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Figure 3. Value Prediction Accuracy on MIPS Registers using a hybrid PPM – Incremental Predictor  (256 history values, search
pattern length = 4).

Considering now only the favourable registers (18 registers having a prediction accuracy over 70% in
figure 3) we obtained the following prediction results, using 4 distinct predictors working together in a
dynamic adaptive manner (see figure 4). As it can be observed, the hybrid predictor is the best (85% average
prediction accuracy), exploiting the synergism between the 3 particular predictors.
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Figure 4. Register Value Prediction Accuracies using 4 distinct Predictors: Last Value, Incremental, Contextual and Hybrid
(Contextual-Incremental).

Finally we present some results obtaine in our indirect jumps/calls target prediction research, a very
difficult problem, too. Figures 5 and 6 present the obtained indirect jumps target prediction accuracies for a
PPM predictor implemented with a complete associative Jump Value Prediction Table (JVPT) structure
having 256 entries. Each entry in the JVPT stores 32 respectively 256 targets values of the corresponding
indirect branch. The search pattern length is varied from 1 to 4 (figure 5) respectively from 1 to 12 (figure 6).
Analyzing the average means obtained results we observed an optimal prediction accuracy of about 90.58%
(for a search pattern length of 3 values) respectively of about 90.46% (for a search pattern length of 4 values)
– when history length is 32, respectively 91.69% (for a search pattern length of 4 values and a history length
of 256). These results are better than that reported by other researchers that used more simplified context
predictors.



Lucian N. VINŢAN 6

�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������

��������
��������
��������
��������
��������
��������
��������
��������
��������

������
������
������
������
������
������
������
������
������

��������
��������
��������
��������
��������
��������
��������
��������
��������

������
������
������
������
������
������
������
������

���������
���������
���������
���������
���������
���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������

��������
��������
��������
��������
��������
��������
��������
��������
��������

������
������
������
������
������
������
������
������
������

��������
��������
��������
��������
��������
��������
��������
��������
��������

������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����

Ap=f(pattern) using the PPM complete predictor 
History=32, JVPT=256 entries

86.48

64.77

89.5499.66 90.58
81.31

90.46

0
10
20
30
40
50
60
70
80
90

100

ap
lu ap

si cc1
fpppp go

hyd
ro2

d li

Aver
ag

e

SPEC'95 benchmarks - 5.000.000 instructions

Pr
ed

ic
tio

n 
A

cc
ur

ac
y 

[%
]

patern=1

patern=2
����

patern=3����
patern=4

Figure 5. Indirect branch prediction accuracy using a complete PPM, varying the pattern size.
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Figure 6. Indirect branch prediction accuracy using a complete PPM, varying the pattern size.

4. CONCLUSIONS AND FURTHER WORK

A lot of works in value prediction domain show clearly that there are significant amounts of value
locality, both from memory-centric (message passing) and producer-centric (program structure) points of
view. The simulation results show that all of the instructions within a single application have a relatively
small overall result space during certain real-time periods. That is, while the potential range of values that
could be produced is enormous, the actual range of values tends to be much more constrained. Increasing the
history depth determines the improvement of value locality. The results are very useful because they express
if and in which condition the value prediction is feasible (e.g. the history depth could be an useful indicator
in developing the attached predictor). Through this paper we proposed a value prediction register-centric
approach instead of a memory-centric or instruction-centric one, as all the other researchers proposed. An
original evaluation is presented in figure 2, where it is evidenced the value locality concept associated with
MIPS's general-purpose registers. The results obtained on some special registers ($at, $sp, $ra) of MIPS
architecture are quite remarkable (≈90% value locality degree) leading to conclusion that value prediction
might be successful applied at least on these registers. Also we demonstrated that an important challenge is
to find some efficient confidence mechanisms. In this last sense, we are working now to a completely new
hybrid value predictor, based on a neural network confidence approach. This approach continues our well-
known work in neural branch prediction [Vin00, Ega03]. More precisely, a neural network (NN) structure is
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used for implementing a dynamic selection mechanism in order to select the best predictor at a certain
moment. Each predictor will inform the NN about its last actions. Based on this information, the NN will
select the proper predictor, optimal at a given time.

Also, encouraged by our already obtained results, we'll try to examine the value locality of all register
writing instructions. We intend to exploit store value locality evaluating the potential reduction in
multiprocessor data and address traffic. For improving the value prediction accuracy we'll try to develop
some new hybrid prediction mechanisms.
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