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The purpose of this paper is to evaluate the accuracy with which the location of laminar separation
can be predicted on two-dimensional and axisymmetric bodies using new boundary-layer equations.
The evaluation was made by studying several flows for which comparisons with previously published
results are possible. Predictions were also made for the separation points of some general classes of
external flows for which complete solutions do not yes exist, including one that exhibits incipient
separation. It was concluded from the study that the method predicts separation points with the
reliability and accuracy needed for aerodynamic design purposes.
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1. INTRODUCTION

In many problems, it is necessary to know whether the boundary layer (either laminar or turbulent) will
separate from the surface of a specific body. If it does, it is also necessary to know accurately where the flow
separation will occur. This is quite important in many design problems. In the design of airfoils or
hydrofoils, it is necessary to avoid flow separation in order to keep drag levels low. In designing for high lift,
predicting separation points is a crucial part of the design problem.

The determination of the separation point in boundary-layer flows has been subject of many
investigations over the past few decades. The usual procedure is to apply numerical methods to the
governing partial differential equation, compute the full-field solution, and thereby obtain the streamwise
station at which the wall shear stress becomes zero. This solution procedure is not without its difficulties; it
is well know that the wall shear stress approaches zero in a singular fashion at the separation point, a fact that
invariably gives rise to problems of numerical convergence there [1], [2], [3]. In the following sections, a
new boundary-layer model, the basic features of which were previously introduced in Ref. [4], is applied for
the determination of the separation point. The mathematical model is presented, a key assumption on the
inviscid solution near the surface is corroborated, and solutions for several external flows (including one that
exhibits incipient separation) are yielded.

2. BOUNDARY-LAYER MODEL

Consider the steady incompressible two-dimensional laminar boundary-layer flow past solid bodies for
which the governing equation is [4]

[ ] [ ] 22 '''''2''''''''''2''''' FFFFFFFFffffffff β−−ξ−+=β−−ξ−+ ξξξξ (1)

where:
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Here, x and y are physical coordinates along the surface of the body and normal to it, respectively, with
0=x  at the leading edge and 0=y  at the body. The prime denotes the differentiation with respect to η and

subscript ξ the differentiation with respect to ξ. L and R are reference lengths of the body, 0=k  for
coplanar flows and 1=k  for axisymmetric flows. The subscripts w, δ and ∞ refer to conditions at the wall,
at the local edge of the boundary layer and far upstream, respectively.

The associated boundary conditions are:

( ) ( ) 00,'0,:0 =ξ=ξ=η ff (2)

'',: FfFf ==η=η δ (3)

Here the inviscid solution ( )ηξ,'F  is known from the external flowfield and then the new boundary-
layer equations (Eqs. (1-3)) provide the functions ( ) ( )ηξξ ,',0,'' ff  and ( )ξwF , that represent the wall shear
stress, the boundary-layer velocity, and the wall mass flux, respectively. Generally, the inviscid solution is
given rather as the velocity distribution on the body surface ( )xU w  than as the velocity field ( )yxU , .
However, by examination of several inviscid solutions evidence is given that the inviscid velocity field in
close vicinity of body is slightly variable. Hence, it can assume for that a simple linear distribution:
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Integrating the x-momentum equation from 0=y  to δ and substituting into Eq. (4) for the slope
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( ) ( )ηξω+=ηξ 1,'F (5)

where:
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Now the solution of the equation (1), which contains information on the location of the separation
point, is determinate if the value of the parameter β is known.

3. NUMERICAL RESULTS

We consider now the determination of the separation points for some general classes of external flows,
previously studied.

Symmetric Flow Past Elliptic Cylinders and Ellipsoids. Consider the ellipse defined in the x’y’-
plane with x’- axis intersects at –1 and +1 and y’- axis intersects at -ε and +ε  and for which the equation is:

1/'' 222 =ε+yx
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The elliptic cylinder is created by an infinite extension of the ellipse in the +z and –z directions and the
ellipsoid is created by a rotation of the ellipse about the x- axis. If a uniform stream is approaching from –x’
direction the potential flow is given by:
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The parameter β at the leading edge for cylinders is βo=1 and for ellipsoids is βo=1/2, regardless of the
value assigned to ε . The present method yields at separation for any value of ε  the solutions βs=-0.664 for
cylinders and βs=-0.439 for ellipsoids. Through the known external parameter ( )εβ ,'x , we can compute for
any value of ε the separation coordinate sx '  or, from the geometric relationship,

( ) 222
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the separation angle sΦ .
The results are shown in Fig. 1 together with the solutions for the circular cylinder [5] and for the

sphere [6].

Fig. 1 – Separation points of the potential flow past elliptical cylinders (--- present prediction, • [5])
and ellipsoids (--- present prediction, ο [6]).

Retarded Flows of the Howarth-Tani Type. For this class of retarded flows, the external parameters
are given by:
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where we shall consider values of 0>n . It is easy to see that βo=0 and the present method yields a different
value of βs for each value of n. Through the known external flow parameter β(x,n) the location of the
physical separation point can be determined. The results are shown in Fig. 2, together with the solutions of
Howarth [7] for n=1 and Tani [8] for n=2,4 and 8.

Fig. 2 – Separation points of Howarth-Tani flows (---- present prediction, • [7], [8]).

Fig. 3 – Separation points of the Görtler flows (--- present prediction, • [9]).

Retarded Flows of the Görtler Type. For this class of retarded flows the external parameters are
given by
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where S(n) stands for sign of n. Regardless of the value of n, βo=0 and the solution for βs is the same as that
for Howarth’s linearly retarded flow (n=1), i. e. βs=-0.3033. Through the known external flow parameter
β(x,n), the location of the physical separation point can be determined for any value of n. The results are
shown in Fig. 3 together with the solutions of Görtler for n=1/2, 1, 2, -1 and –2 [9]. The present method
yields 0 as 1 →→ nxs  from above and ∞→sx  as ( )ssn β−β→ 2/ from below. In the range

( ) 02/ <<β−β nss , the flow remains attached for all finite positive x.
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Accelero-retarded Flows of the Falkner Type. For this class of flows, the external parameters are
given by

( )

( )
( )

( )
( ) ( )[ ] edge). leading(blunt  1,/1e12

edge), leading (wedged 1,0,'de
'e

e/e
1

2

edge), leading (sharp 0,1e2

,for  1;e/e

2

0

'
1

maxmax

=+−−=β

≠





−

=β

=−−=β







===

∫ −
−

−

−

nxxx

nx
n
x

nx
nx

n

nx
U
U

nx
U
U

x

x
x

n

xn

x

wxnw

The solution for βs by the present method is different for each value of n. The results are shown in Fig.
4 together with the numerical results of Ref. [10] for 1. and 4/5 3/5, 2/5, 1/3, 1/5, ,0=n  Figure 4 evidences
that the laminar boundary layer tolerates, without separating, smaller and smaller adverse pressure gradients
the longer the accelerated path.

Fig. 4 – Separation points of the Falkner flows (--- present prediction, •  [10])

Retarded Flows of the Curle Type (Incipient Separation). For this class of flows, the external
parameters are given by
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Regardless of the value of the parameter 1 , 0 =βα  and the present yields the solution βs=0.664.
Through the known external flow parameter ( )αβ ,x , the location of the physical separation point can be
determined for any value of α. The results are shown in Fig. 5 together with the solutions of Curle [11] for
α=-0.12156, 0.0 and 0.07885. The results from the present method reveal that Curle’s family of retarded
flows contains a flow that exhibits incipient separation for the particular value 379.0=α i  at the streamwise
station 922.0, =isx . For values α>α I separation does not occur at all, whereas for values iα<α  separation
occurs with decreasing sensitivity of the solution for sx  to the value of α.

4. CONCLUSIONS

Based on the calculations shown in this paper, the following conclusions can be made on the accuracy
of calculating the laminar boundary-layer separation on the two-dimensional and axisymmetric bodies:
1. A direct method involving the particular inviscid velocity field in the neighbourhood of the body enables

the accurate determination of the separation point from velocity distributions on the body surface alone.
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2. The present method describes in a way the transition of the flow structure, in the immediate vicinity of
the separation point, from the classical boundary-layer to that of a triple deck.

3. With back flow near the wall past separation, the method is stable in downstream direction so long as the
thickness of the reversed-flow region is comparable to the boundary-layer thickness. For larger regions
of reversed flow, the equations become unstable. In a consistent way, the flow in these larger separated-
flow regions physically becomes unstable, and an unsteady boundary-layer model has to be used.

Fig. 5 – Separation points of the Curle flows (--- present method, • [11])
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