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This paper present a nonlinear viscoelastic model for dynamic behaviour of the dissipative materials
used for antivibratory isolation. Starting from the nonlinear integral form of the viscoelasticity law a
nonlinear Kelvin-Voigt model with nonlinear stiffness and damping characteristics is obtained. Then,
by using a global linearization criterion the equivalent linear characteristics corresponding to different
excitation amplitudes result. This method leads to a good approximation of the nonlinear behaviour
and it is convenient to use for current applications, especially in vibration control strategies.

1. INTRODUCTION

The dissipative materials used in antivibratory isolation systems exhibit a strong nonlinearity and a
remarkable hysteretic damping capacity. Thus, a minimal mechanical model, which is able to describe these
essential characteristics, is a dynamic nonlinear viscoelastic model with the acceptance of the
phenomenological equivalence between viscous and hysteretic damping (reo-hysteretic hypothesis [4, 6].

A such nonviscous model was built in [5, 6] by using two dynamic nonlinear functions – one for
material strength modeling and another including material
damping, both in terms of strain level caused by external loading
conditions.  Because this model can be regard as an extension in
the nonlinear domain for the non-viscous linear Kelvin-Voigt
model [8], in the next we will use the denomination - the
nonlinear Kelvin-Voigt model (NKV model).

The NKV model has a physical correspondent in the one-
degree-of-freedom system of the resonant column (RC) apparatus
[11]. The RC system can be considered as a one degree-of-
freedom system that is made up of a single mass (the vibration
device) supported by a spring and a damper represented by the
specimen. But, both spring and damper have non-linear
characteristics due to the mechanical properties of the specimen
materials and thus the entire system is a non-linear one [5, 6]
(fig.1.1).

2. DYNAMIC MATERIAL FUNCTIONS

For the qualitative and quantitative evaluation of the dynamic material functions one can use the
experimental data obtained from dynamic test performed in resonant column device [4, 6].

The resonant column apparatus was designed for laboratory determination of the dynamic response of
soils by the means of the propagating steady-harmonic shear or longitudinal waves in a cylindrical soil

 x
 F = F0 sin ωt

 c = c(x) k = k (x)

       m

Fig. 1.1 NKV model
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specimen (column) under resonant frequency conditions [11]. The sample together with the vibration device
is enclosed into a cell chambre where the confining conditions are supplied.

The same RC apparatus can be used not only with soil samples but also with any material samples. In
the next, such determination will be illustrated using experimental resonant column data obtained from
rubber sample tests.

In the Drnevich type apparatus, the bottom specimen end is fixed and at the top specimen base the
vibration excitation device is attached (fixed-free end conditions). The response motion is picked up in terms
of acceleration of the specimen-vibrator system. From the value of accelerometer output A, the impute
current C and the resonant frequency rf , as well as the sample geometry and end conditions one can obtains
the amplitude of the longitudinal or shear strain invariants ( )0 0,ε γ ; the velocity of longitudinal or torsional

wave propagation ( ),l sv v ; the rod E or shear modulus G and the longitudinal or torsional damping ratio

( ),l sD D :
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, (2.1)

where 0ω is the specimen natural pulsation, h is the specimen length, ρ  is mass density of specimen, lΨ is the
root of the longitudinal frequency equation and sΨ  is the root of torsional frequency equation, both wit the

same analytical form: 2 31 4
3 45

R R RΨ = − + but with different R: in longitudinal case R is the ratio between

weight of the specimen and weight of the top vibrator / topR W W=  and in the torsional case R is the ratio

between torsional inertia of the specimen and the torsional inertia of the top cap system : / topR J J= .
In the above determinations, one has

assumed constant amplitude of excitation and a
constant cell pressure.

By changing these conditions, due to the
nonlinear and dissipative behaviour of the
material, another values of the above
mechanical characteristics are obtained. As a
result of several sequences of tests with varying
loading level, a set of the modulus ( i i or E G )
values and damping ( i i or l sD D ) values
corresponding to stain amplitude ( 0ε or 0γ ) are
obtained.

By statistical processing of these data one
can obtain the modulus and damping functions
in terms of strain: ( )0E E= ε and ( )0l lD D= ε

or ( )0G G= γ  and ( )0s sD D= γ . Also, by using
the relationships between strains and
displacements of the sample, these material

function can be express in terms of longitudinal displacement x or rotation θ:
( )E E x= and ( )l lD D x= or ( )G G= θ  and ( )s sD D= θ .

As an example, in fig. 2.1 are given the result of such determination using the test performed upon
rubber sample in longitudinal harmonic loading conditions.

Fig. 2.1
Modulus and damping functions
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3. DYNAMIC BEHAVIOUR OF THE NKV MODEL

For the longitudinal harmonic vibration case, the differential equation governing the non-linear single
degree-of-freedom of resonant column system can write as [5, 6]:

0( ) ( ) sin tmx c x x k x x F+ ⋅ + ⋅ = ⋅ ω& , (3.1)

where x is the system's displacement,  m is the mass of vibration device, ( )c c x=  is the non-linear damping

function, ( )k k x=  is the non-linear spring function, 0F is external force amplitude and ω is the pulsation of
this force.

In eq. (3.1) was used the same method
that describes the nonlinearity by strain or
displacement dependence of the material
parameters:

( ) ( )Sk x E x
h

=  [N/m]  ,

0( ) 2 ( )c x m D x= ω ⋅  [Ns/m].

(3.2)

where S is the cross sectional area of the
specimen, h is the specimen's high, 0ω is the
natural pulsation of the specimen, ( )E x is the

modulus function and ( )D x damping function
of the specimen material.

By using the geometrical rubber sample
and its mechanical characteristics from fig. 2.1
the strength and damping NKV functions
results in the exponential form given in fig.3.1.

4. EVALUATION OF THE NON-LINEAR RESPONSE

By using the change of variable t0ω=τ  and by introducing a new "time" function [1]:

0

( ) ( )x t x
 τϕ τ = =  ω 

, (4.1)

one obtains from eq. (1.2) a dimensionless form of the non-linear equation of motion:

( ) ( ) υτ⋅µ=ϕ⋅ϕ+ϕ′⋅ϕ+ϕ ′′ sinKC , (4.2)

where the superscript accent denotes the time derivative with respect to τ:

2

2 2
0 0

1 1( )           ;         ( )=x x∂ϕ ∂ ϕ′ ′′ϕ τ = = ϕ τ =
∂τ ω ∂τ ω

& && , (4.3)

and:

Fig. 3.1
Dynamic NKV characteristics
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For a given normalized amplitude µ and relative pulsation υ, the non-linear equation (4.2) can be
numerically solved [9] and a solution of the form:

( ) ( )( ; , ) ; sinnl nlϕ τ µ υ = µ ⋅ Φ υ µ ⋅ υ τ + Ψ (4.5)

can be obtained. In eq. (4.5) ( );nlΦ υ µ are the magnification function and Ψ the phase difference.
Since the magnification functions gives significant information about the dynamic system behaviour in

fig. (4.1) several functions ( );nlΦ υ µ obtained for tested rubber are shown.

Fig. 4.1 Fig. 5.1
Magnification functions for non-linear  model Magnification functions for linearized model

5. EVALUATOIN OF THE EQUIVALENT LINEAR CONSTANTS 

In many engineering problems the generation and solving of large non-linear systems is not justified.
Also, in structural mechanics there are efficient computational methods, based upon the hypothesis of linear
body, which are correct for the structures himself but are inadequate for the antivibratory materials that work
together with these structures (especially in vibration control strategies where is no time for large non-linear
system solving).

 All this reasons justify the attempt to replace the NKV non-linear equation (4.2) by an equivalent
linear equation:

sinc k′′ ′ϕ + ⋅ ϕ + ⋅ ϕ = µ ⋅ υτ%% , (5.1)

provided that no large difference between the non-linear and equivalent linear solutions occurs.
By using a global linearization method in [3] the equivalent linear stiffness and damping coefficients c

and  k  was obtained in the form:
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= ϕ ⋅ ϕ = ϕ ⋅ϕ⋅ ϕ
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where:

( ) max 2

2max
4

m
ì

c k - c
ϕ = ϕ τ =µΦ =

%% %
. (5.3)

Because the integration limit mϕ is function in terms of  c%  and k% , from eqs. (5.2) a non-linear system
of two algebraic equations for the unknown's c and  k are obtained.

Thus, for instance, if the material function ( )C ϕ  and ( )K ϕ has the exponential form:

( ) ( ) ( ) ( )1 2 3 1 2 3exp    ;   expC a a a K b b bϕ = − ⋅ − ϕ ϕ = + ⋅ − ϕ (5.4)

as in the tested rubber sample, from eqs. (5.2) and (5.3) the following system result:
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(5.5)

This system can be numerically solved [10] for different amplitudes µ and the equivalent linear values
for c%  and k%  are obtained.

Thus, using this method for tested rubber a set of
equivalent linear constants c%  and k%  was obtained (table
5.1) and the corresponding magnification functions are
given in fig. 5.1. The comparison between non-linear (fig.
4.1) and linearized (fig. 5.1) magnification functions have
shown a reasonable agreement.

As can see from table 5.1 and fig. 5.1 the equivalent
linear constants c%  and k%  are, in fact, functions in terms
of normalized excitation amplitude µ: ( )c c= µ% %  and

( )k k= µ% % . Thus, apparently, the linearized NKV model is
non-linear model too containing non-linear characteristic
functions ( )c c= µ% % and ( )k k= µ% % . But, the changing the

variable x with the new variable µ is more convenient because x is unknown of the analytical solving method
while the amplitude µ is not.

After that determining a set of equivalent linear constants (as those given in table 5.1) for practical
applications it is possible to evaluate the dependence of these dynamic characteristics in terms of excitation
amplitude in normalized form µ (fig. 5.2). Also, the non-linear damping and spring functions ( )c c x= and

( )k k x=  of the initial NKV model can be expressed in terms of dimensional amplitude F0 (fig.5.3).

Table 5.1

µ c% k%
610− 0,131 0,550

65 10−⋅ 0,208 0,364

510− 0,262 0,280

55 10−⋅ 0,310 0,251

410− 0,314 0,245
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Fig. 5.2
Equivalent linear characteristics in terms of

normalized excitation amplitude µ

Fig. 5.3
Non-linear characteristics in terms of

excitation amplitude F0
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