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1. INTRODUCTION

For a bivariate random vector (X, Y), the distribution of the ratio X/Y is of interest in problems in
biological and physical sciences, econometrics, and ranking and selection. Examples include Mendelian
inheritance ratios in genetics, mass to energy ratios in nuclear physics, target to control precipitation in
meteorology, and inventory ratios in economics. The distribution of X/Y has been studied by several authors
especially when X and Y are independent random variables and come from the same family. For instance, see
Marsaglia [1] and Korhonen and Narula [2] for normal family, Press [3] for Student's t family, Basu and
Lochner [4] for Weibull family, Shcolnick [5] for stable family, Hawkins and Han [6] for non-central chi-
squared family, and Provost [7] for gamma family. However, there is relatively little work of this kind when
X and Y are correlated random variables. Some of the known work include Hinkley [8] for bivariate normal
family, Kappenman [9] for bivariate t family, and Lee et al [10] for bivariate gamma family.

In this paper, we study the distribution of X/Y when (X, Y) has the elliptically symmetric Bessel
distribution given by the joint probability density function (pdf)
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for —0 <X <o, —co<y<oco, —0<d <00, —c0o<fF<oo, a>-1, b>0, and —1< p <-1, where
K, (.) is the modified Bessel function of the third kind defined by
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and the normalizing constant M satisfies
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ﬁ = 23+1 ma+2r(a + 1)(1 _ p2)(a+l)/2-

For details on the theory and applications of the Bessel functions see Korenev [11].

When a=0 and b=0/ \/5 , (1) reduces to the elliptically symmetric Laplace distribution given by
the joint probability density function (pdf)
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for —oo <X <00, —0<Yy <00, —0<q <00, —0<fF<00, g>0, and —1< p <-—1, where K;(.) is

the modified Bessel function of the third kind of order zero. The parameter O is the correlation coefficient

f(x,y)=

between the X and Y components. For details on properties of these distributions see Jensen [12] and Fang
etal. [13].

Bessel random variables are generalizations of Laplace random variables and have found applications
in a variety of areas that range from image and speech recognition and ocean engineering to finance. They
are rapidly becoming distributions of first choice whenever “something” with heavier than Gaussian tails is
observed in the data. In many of the application areas, one would be interested in the correlation or
dependence between two Bessel random variables. Some examples are:

* in communication theory, X and Y could represent the random noise corresponding to two
different signals.

* in ocean engineering, X and Y could represent distributions of navigation errors.

* in finance, X and Y could represent distributions of log-returns of two different commodities.

* inimage and speech recognition, X and Y could represent “input” distributions.
In each of the above examples, the elliptically symmetric Bessel distribution given by (1) could be used to
model the dependence between X and Y.

The aim of this paper is to calculate the distribution of the ratio X /Y when (X,Y) has the joint pdf
(1). The calculations of this paper involve the hypergeometric functions defined by

o (@, x*

CE@ByX=5 B (), K

and

s @B X
@By om0 = e m, K

where €, =c(C+1)---(C+k —1) denotes the ascending factorial. We also need the following lemmas.

Lemma 1 (Equation (2.16.2.3), Prudnikov et al [14], volume 2) For a>0, >0 and a >v,
a
Ixa'l (@=-x)""K, (cx)dx = AV) + A(V),
0
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Lema 2 (Equation 2.16.2.4), Prudnikov et al [14], volume 2). For a>0 and a>v,

o
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Lemma 3 (Equation (2.16.2.2.), Prudnikov et al [14], volume 2). For ¢>0 and a>v,
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Further properties of the above special functions can be found in Prudnikov et al [14] and Gradshteyn and
Ryzhik [15]

2. PDF
Theorem 1 derives an explicit expression for the pdf of Z =X /Y in terms of the hypergeometric

functions.
Theorem 1 Suppose X and Y are jointly distributed according to (1) and let

A=1-psin(20), (2)
B=(pB-a)cosf +(pa - [)sinb, (3)
C=a’+pB*-2pag, 4)
and
D=(1-p°)asin8-LcosB)*/A (5)

Furthermore, define
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where
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If B>0 thenthe pdfof Z = X /Y can be expressed as
f(2) = g,(arctan(z)) + g, (1T + arctan(z))+ g,(m+ arctan(z)) (11)
1+2°
On the other hand if B <0 then
+ + +
f(2) = g, (arctan(z)) + ¢, (7T + arctan(z)) + ¢, (arctan(z)) (12)

1+2°

Proof: Set (X,Y) =(T sinB,T cosf). Under this transformation, the Jacobian is T and so one can
express the joint pdf of (T,0) as

2
g(t.6) = Mt(At> +2Bt +C)*" KaH” At +2Bt+C H (13)
H byi-p> f

where A, B and C are given by (2), (3) and (4), respectively. Set z(t) = At> +2Bt +C and note that

a2 +2./B> - A(C - 2).

dt

Note further that z(t) is an increasing function of t with z(0) = C if B = 0. On the other hand, if B < 0 then
2(t) decreases between 0 <t < z™'(D) before increasing for all t = z™' (D), where D is given by (5). Thus,
the marginal pdf of 8 can be expressed as §(8)=9,(0) if B=0 and as g(8)=9,(6)+9,(0) if B<0,
where
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These two expressions actually reduce to those given by (6) and (7), respectively, as shown below. Consider
(14). Note that ‘(B2 -AC) /(AZ)‘ <1 forall z=>C . Thus, using the series expansion
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where the last step follows by substituting Yy = \/E . Application of Lemma 2 and properties of the
hypergeometric functions shows that the two integrals in (16) reduce as

one can expand (11) as

9,(6)

A

N

and

ryerk 0 Y Gy 2000
l : Hoy/1-p? 2
respectively, where A and Q(K) are given by (8) and (9), respectively. Substituting these into (16), one

notes that (14) reduces to (6). By using Lemma 1, one can similarly show that (15) reduces to (7). The
result of the theorem follows by noting that the pdf of Z =tan8 can be expressed as
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_ g(arctan(z)) + g(7T +arctan(z))
1+2°

and that 9(8) = g,(0) if B20 and 9(8)=0,(0) +9,(0) ifB<0. g

Figures 1 and 2 illustrate possible shapes of the pdfs (11)-(12) for a range of values of @, 3,a and 0.

f(2)

(17)

Note the diminishing scale of the densities with increasing values of @ and how their location depends on
the relative magnitudes of @ and 3.
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Fig.1 Plots of the pdfs (11)-(12) for a=0,b =1 and (a): @ =1 and B =1;(b):a =1 and B =3;(c): @ =3 and B =1;
(d: @ =3 and B =3. The four curves in each plot are: the solid curve for 0 =0.2; the curve of dots for 0 =0.4; the curve of
dots for 0 =0.6; and, the curve of dots and dots for 0 =0.8.
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Fig.2 Plots of the pdfs (11)-(12) for @ =1, 3 =1,b =1 and (a): @ = 0; (b): @ =0.5; (¢): @ =1; and (d): @ = 2.
The four curves in each plot are: the solid curve for 0 =0.2; the curve of lines for 0 =0.4; the curve of dots for 0 =0.6; and, the
curve of lines and dots for O =0.8.

Corollary 1 considers a particular form for the pdf of Z for the cased =3 =0. Note that the resulting
pdf is elementary and depends only on p.

Corrolary 1: If X and Y are jointly distributed according to (1) and if a =3 =0 then the pdf of Z
reduces to

_ 2g(arctan(z))
f(g) =0 (18)
where
1_ 2
gO) =\

211{1 — psin(20)}
for 6 J[0,27).
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Proof: Note that in this case (13) takes the form

HVAlt] H
N

g(t’e) = MAa/2 |t ’a+l K

where A is given by (2). Integrating this over 0 <t < oo yields the form for g(.) given in the corollary. The
result of the corollary follows by noting that the pdf of Z = tan 6 can be expressed as

_ 9(arctan(z)) + g(7T +arctan(z))
1+2°

f(2)

(19)

and that g(arctan(8)) + g (77 +arctan( 6)) for the form for g(.).
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