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A new integration condition for Einstein’s field equations is found in the static case of a spherical
body with mass density ( )rρ  and radius R . Taking the metric as 2 2 2 2 2 2d d d ds e c t e r e rν λ σ= − − ΩΩΩΩ ,
with 2d ( d ) /= ×r r rΩΩΩΩ , the condition is 0ν + σ = . It allows the metric functions ( , , )ν λ σ  to be

expressed in terms of a single potential function,Φ , which satisfies a Poisson-type equation with
Euclidian coefficients. The source of the field is entirely located inside the body and contains
explicitly the gravitational energy. The integration condition may be interpreted in terms of a gauge
condition of a generalized De Donder-Rosen-Fock type. Among the characteristic features of the
potentialΦ , we point out the compliance with the point-like black hole and with the existence of a
finite pressure for .constρ =  and R →∞ , namely 2 / 2p c= ρ . Thus, a solution of the famous
Seeliger’s Paradox, of the divergent cosmical pressure, is given in the framework of General
Relativity Theory without introducing neither a global curvature space nor a cosmological constant. A
point-like black hole, surrounded by a spherical horizon of gauge invariant radius, is the natural
equivalent of a classical point-like body, in the framework of General Relativity Theory. In its turn,
such an object may by interpreted, in terms of a flat space-time geometry, as due to the existence of a
repulsive gravitation acting at interbody distance of the magnitude order of 2/GM c .
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1. ISTORICAL SURVEY REGARDING THE PARADOX OF COSMICAL PRESSURE.
FAILURE OF THE ATTEMPT TO EXPLAIN THE PARADOX
WITH THE AID OF INTERIOR SCHWARZSCHILD METRIC.

THE LEAVING OF THE HYDRODINAMIC MODEL OF MATTER.

The aim of this work is to take again the problem of mechanical equilibrium of an infinite physical
Universe, in view of its complete solving in the framework of Einstein’s General Relativity Theory. As it is
known, in 1895 Hugo von Seeliger formulated the “gravitational paradox”, named equally the “paradox of
the cosmical pressure” [1]. The content of the paradox is the denying of the possibility to build up a model of
Universe, in the framework of Newtonian Gravitational Theory, in which smoothed out matter should be
represented by an ideal fluid filling up the infinite Euclidian space and being characterized by the finite
values of pressure and mass density. For ensuring the pressure finiteness, Seeliger put forward the conjecture
about the exponential decrease of the Newtonian potential in terms of distance, without being able to predict
the magnitude order of the cosmical equilibrium pressure [2].

The advent in 1905 of the Special Theory of the Relativity [3] created the possibility to foresee not
only the finitude of the pressure, but equally its magnitude order 2 16/ 3 10 atmp c −≈ ρ ≈  [2]. The advent in
1915 of the General Relativity Theory allowed the reappraisal of the Seeliger’s gravitational paradox in
expectation of a convenient solving, without being necessary to modify just the Newtonian potential, since
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the new theory predicted no such modification [4]. But, since about 1922 [5} it was ascertained that using the
inner solution of the Schwarzschild one body metric, worked out in 1916 [6], it is not possible to prevent the
appearance of an infinite pressure. For a spherical body of constant mass density, this happens when

2(9 /8)(2 / )R GM c=  [7]. Albert Einstein and William de Sitter, believing that the possibilities of the theory
put forward in 1915 were already exhausted, without being able to avoid the infinite pressure, decided to
abandon the hydrodynamic model and to add to the field equations a term containing the controversed Λ
constant [8]. Perhaps, without this hurried leaving of the hydrodynamic model, which induced suspicion on
possibility of edifying an infinite Universe, according to the philosophical line of reasoning of the XIX - th
century, the subsequent development of the Relativistic Cosmology would had a different course [9].

2. THE TRUE CAUSES OF THE FAILURE OF THE HYDRODYNAMICAL MODEL.
THE CONCEPT OF ACCESIBLE SPACE. ITS TOPOLOGICAL ORIGINE.

THE CONCEPT OF POINT LIKE BLACK HOLE SURROUNDED
BY A SPHERICAL GAUGE INVARIANT HORIZON AND ITS COMPLIANCE

WITH “ZEROTH LAW OF THERMODYNAMICS”

Leaving aside the historical aspect, we focused our attention in view of identifying the true reason
which encumbered the reaching of the cosmical equilibrium at a finite pressure, by a cancellation in every
point of the space between the attractive gravitational force (of the Newton type) and the repulsive
hydrodynamic force (of the Euler type). In a reliable manner, we established that the pressure finiteness is
obtained provided that, by a special gauge, the forbidden zone of the position space, due to the existence of a
black hole, is excluded from physical calculation. As a black hole is a topologic singularity, it cannot be
avoided altogether, but the inaccessible space may be reduced to a single point ( 0r = ). So, we reached the
concept of point-like black hole. Black hole is an equivalent, in the framework of General Relativity Theory
(GRT) of the Newtonian concept of point-like body [10]. It has two kinds of physical properties: 1) invariant
under a gauge transformation (horizon surface, mass, electric charge, intrinsic angular momentum) and 2)
gauge dependent (radial size, defined as 00 1( ) 0g R = ). A point-like black hole is therefore characterized by

1 0R =  (radial size) and 2 216 ( / )A GM c= π  (horizon surface) [11, 12].
Further on, our aim is to find the integrability condition in compliance with a point-like black hole. We

assume the static metric, yielded by a spherical body placed in the origin of an inertial frame, to have the
form [13]

{ }2 2 2 2 2 2 2 2d d 2 d d d d sin ds e c t c t r e r e rν λ σ  = ± η − + θ + θ ϕ  (1)

where ( , , , )ν η λ σ  are function of the radial coordinate r .
We determine the four metric functions ( , , , )ν η λ σ by resorting to the field equations of GRT, the field

source being the matter tensor of the hydrodynamic model (the so called perfect fluid scheme). The
equations to be solved are the following ones [14]

( )

,4

( )
2

0

18 ;
2

d, .
( )

p

GE T E R g R
c

pT c H U U pg H
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αβ αβ αβ αβ αβ
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αβ α β αβ

≡ − π ≡ −

= + ρ − =
ρ∫

(2)

Here Eαβ  is the conservative field tensor of Einstein, Tαβ  is the matter tensor of the fluid, ( , )pρ  are
the invariant mass density and the invariant pressure, respectively, and H  is the potential of Helmholtz.

( ), ( )r p p rρ =ρ =  for 0 r R< <  and 0, 0pρ = =  for R r< < ∞  (Do not confound R  - radius of the
spherical source with R - the scalar of Rαβ  in Eαβ  expression). For r R> , the solution we look for is
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( ) ( ) ( )
2

2d1 2 exp / 2 , exp exp / 2
d

e r
r r

ν µ  = − −σ λ + ν =  σ  − η   
, (3)

σ  and η  being arbitrary functions of their argument r , as a result of spherical symmetry and of the Eαβ -

conservativity, 2GM cµ = , M  stands for the mass of the source. Now, we may use the solutions (1) and (3)
for defining the parameter 1R  and calculate the parameter A  (not depending on 1R  !):

( ) [ ] ( )21 2 2 2
1 1 1 1 1

( )1 2 / exp 0, 4 exp ( ) 4 2 / 16
2
RR A R R R Rσ − µ − = = π σ = π µ = πµ  

. (4)

Thus the parameter A  (the horizon surface) depends neither on the function η , nor on the function σ .
In other words it is independent on gauge1 Accordingly, we may adopt a special gauge which delivers us
1 0.R =

3. JUSTIFYING THE CHOICE OF THE METRICAL FUNCTION η  (TIME OBLIQUENESS)
AND σ  (RADIAL SIZE GRADUATION) IN AN INERTIAL FRAME OF COORDINATES

Concerning the functionη , we may adopt the value 0η = . This may be argued in the following way.
Out of 2d s , we may define first a Lagrange function of motion through the formula 0 (d / d )L m c s t= − .
Thereafter, we define a momentum as / dp L= ∂ υ!"  and ask the condition 0p →"  for 0υ→

" . This is possible
provided that 0η =  or, equivalently, time is orthogonal onto position space (no obliqueness of time). Further
on, we go to determine the functionσ . For this purpose, we consider a gravitational plane rotator. It delivers
the metric 2 2 2 2

0d d d , d ds e c t e l l rν σ
⊥ ⊥= − ≡ θ, and the bi-dimensional elementary invariant

[ ](2) exp ( ) / 2I c t l⊥δ = ν + σ δ δ . If 0ν + σ = , then (2)Iδ  is an universal invariant no longer depending on the
mass of the source body. In this case, (2)Iδ  may be put in compliance with the quantizing of space and time

under the form 2 3
(2) ( / )PI l n G c nδ = δ = δ# , were Pl  is the Planck length and nδ  the number of discrete states

confined in the elementary bi-dimensional Universe. Now, we obtain the explicit expression [15] of σ :
( ) ( )0 1 (2 / )exp / 2 exprν + σ = → − µ −σ = −σ  whence ( )sh / 2 / rν + σ = σ =µ  id est

( ) ( )
2

2 2 2 2ln 1 / / , exp / 2 .sr r r r rσ = +µ +µ = σ = +µ +µ (5)

Here sr  is „radial coordinate” used by Schwarzschild [16].

4. COMPLIANCE OF THE POINT LIKE BLACK HOLE CONCEPT WITH THE BEKENSTEIN –
HAWKING MASS FORMULA

Denoting ( )sr f r= , 2 2( )f r r= +µ +µ , we obtain the transition from Schwarzschild metric, for a
point-like body, to the natural metric, for both point-like source and point-like black hole, under the form

                                                
1 This result is known in the literature of the subject as „ Zeroth law of black hole Thermodynamics” (R. M. Wald,
General Relativity, Chicago, University Press, 1984)
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( ) ( )

( ) ( ) ( )
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 ×′ µ  = − − + =   − µ    
 × − + µ + µ + + µ + µ +µ  

" "

" " . (6)

This change of gauge is motivated, on a side by invoking the equivalence principle and, on another
side, by recovering the inertia principle in view of avoiding the infiniteness of the cosmical pressure.

The key for ensuring the finiteness of the cosmical pressure is, as we already pointed out, the avoiding
from calculations of the inaccessible zone of the position space, yielded by the inevitable presence of the
black hole. The “inevitability” is closely connected to the Einstein’s theory and has a topological origin. In
other words, only by changing the field equations of relativistic gravitation it is possible to avoid altogether
the black hole from the physical theories. Coming back to the problem of avoiding the inaccessible zone, this
avoidance mast be made in compliance with the equivalence principle, that is through the agency of a gauge
changing. It is possible to perform the gauge change in a trivial way, as a purely geometric
transformation 2sr r= + µ , but, in this way, the metric is still written in a non inertial frame and this feature
alters the value of the cosmical pressure, without altering its order of magnitude. We consider that the
transformation 2 2( )f r r= +µ +µ  is just the physical one, to be taken into account, as far as it not only
avoids from calculation the inaccessible zone, placed beyond the time spending barrier, but equally ensures
the restoring of the inertia frame, because the position space of the transformed metric is almost conformally
Euclidian.

Further on, we shall give an example about the full compliance of the concept of point-like black hole
with the thermodynamic theory of black hole, worked out, independently, by Bekenstein and Hawking [17,
18]. The starting point is the mass variation formula for a black hole, at constant angular momentum J  and
constant electric charge Q , namely [ ( ) /(8 )]M g A G Aδ = π δ . Here, A  is the horizon surface,

2( ) / ( )Hg A GM R A=  is the gravitational acceleration of the horizon and / 4HR A= π is the horizon radius.
All the quantities in the formula of Mδ  are gauge invariant and, accordingly, do hold equally for a point-
like black hole. On the other hand, an acceleration applied to a box filled with radiation is equivalent to a
temperature increase. Bekenstein conjectured that the same relationship between acceleration and absolute
temperature does hold for a black hole, which is not a simple topological singularity, but rather a physical
systems to which the concepts of entropy and absolute temperature are applicable. By writing

2 22
2

2

( ) 1
2 4

( )
8

P
BH BH

P

c l g A AA k T S
kG l

c g AE c M
G

  
= δ ≡ δ  π   

δ = δ = δ
π

 (7)

we may identify, for the black hole, an absolute temperature [17]
2 2 ( )
2

P
BH

c l g AT
k G

=
π

 (8a)

and an entropy [17]

2

1
4BH

P

AS k
l

= . (8b)

Let us now calculate the horizon surface by resorting to the natural gauge ( 0ν + σ = ). We can write
[16]

( )
1

2
2 2
1 20 1

lim 4 1 ,
R

GMA R
c R→

= π +Φ +Φ Φ ≡ . (9)

If, in addition, we use the fine structure formula 2137c Q=# , we come to the expression
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( )
1

2
2 2 2

1 30
lim 137( / ) / ,BH P PR

k G GS M M R l Q G l
c c→

π= + + ≡ #
#

. (10)

To obtain just the Bekenstein – Hawking entropy formula, we have only to assume that in the
proximity of the horizon surface the discrete structure of space becomes relevant and that, accordingly, the
condition 1 0R →  should be replaced by the more realistic one 2

1 / 137 /PR l Q G c→ = . In this way we
reach the famous formula (for a charged black hole) [19]

( )22 2 /BH
k GS M M Q G

c
π= + +
#

. (11)

If 0Q = , then 1 0R →  and ( )2216 /A GM c= π  as already known.

5. SCHWARZSCHILD EXTERIOR METRIC IN THE NEW GAUGE, DETERMINED BY THE
CONJECTURE ABOUT POINT-LIKE BLACK HOLE, AND ITS MAIN FEATURES

The natural gauge ( 0ν + σ = ) is not a trivial coordinate transformation of the Schwarzschild metric
justified by the Equivalence Principle. It is that gauge, long time looked for by the astronomers and
physicists, which, by a natural incorporation of the Inertia Principle into the GRT, should be able to solve
some difficult problems of Cosmology, Astrophysics and Black Hole Physics. The problems solved by the
gauge ( 0ν + σ = ) and not by the gauge 0σ =  are coming from those proprieties of a black hole which are
not gauge invariant.

The metric and the field equations in the one body case, for a point-like body containing a point-like
black hole, may be obtained out of formulas (5)

( ) ( ) ( )22 2 22
2 2

2 2 2
2

02

dd dd 1 ,
11

4 ( ), ( ) ( ).

c t rs
r

G M
c

 × = − +Φ +Φ + + Φ + Φ +Φ  

∆Φ = − π ρ ρ = δ

r r

r r r

 (12)

The above formula does hold equally for a spherical source of field, in the outward region r R> . Onto
the surface r R=  of the spherical source, the potential function Φ  and its derivative d ( ) / dr rΦ  must go
continuously into their counterparts, which are solutions of the Einstein’s field equations inside the source
( r R< ). If formula (12) would be valid in the inward region, provided that only amendment to be brought is
the replacing of the point-like mass distribution 0 ( )M rδ "  by arbitrary mass distribution ( )rρ " , then we can
speak about a” functional solution” of the one body problem, namely ( ), ( ), ( )ν = ν Φ λ = λ Φ σ = σ Φ . Such a
solution cannot be exactly obtained in the framework of GRT. For practical applications, however, it is
possible to obtain a first order functional approximation

2 2
2 21 11 , 1

2 2
e e eν λ σ   ≈ −Φ + Φ ≈ ≈ +Φ + Φ      

. (13)

The only relativistic theory of gravitation, delivering exactly a functional one body metric, is the
Rosen’s theory devised in 1974 [20]2. The first order approximation of the Rosen’s one body metric does
coincide with the approximation (13), coming from Einstein’s GRT. So, one can speak about an almost
functional one body metric, delivered by the GRT, within the conjecture about the existence of point-like
black hole.

                                                
2 See also Ion Dobrescu and Nicholas Ionescu-Pallas, Variational and Conservative Principles in Rosen’s Theory of
Gravitation, Balkan J. of Geom. And Its Appl.,Vol 4, nr. 1 (1999), pp. 31-43
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6. GAUGE AS INTEGRABILITY CONDITIONS. CONTINUITY CONDITIONS ONTO THE
SPHERICAL SURFACE OF SOURCE

It is opportune now to point out some aspects connected to the concepts of integrability and gauge.
Only the components 00E  and 22E  of the Einstein’s field tensor contain second order derivatives, namely:

( )

( )

00

11

222

exp ,
,

1 1exp ( ) .
2

E first order derivatives
E first order derivatives

E first order derivatives
r

λ − ν = ∆σ +
− =

λ −σ = − ∆ σ + ν +

(14)

Accordingly, there are two obvious cases of integrability: 1) 0σ =  (Schwarzschild) and 2) 0ν + σ =
(Natural gauge). The gauges, defined as integrability cases, do hold, in the same form, for either inside or
outside source solutions. Nevertheless, accounting for the geometrical radius of the source, which is not
gauge invariant, and, at the same time, for the second derivatives of the metrical functions, which have saltus
onto the source surface, we conclude that the transformation 2 2

sr r= +µ +µ  performs the going over from
the gauge 0σ =  to the gauge 0ν + σ =  only outside the source. The interior solutions in the gauge 0ν + σ =
must be worked out separately, even though the homologous solutions for the gauge 0σ =  are known. Of
course, there are many other integrability conditions which are less natural, because resort equally to first
order derivatives.

7. BIMETRIC EXPLANATION OF THE POINT-LIKE BLACK HOLE AND OF ZEROTH LAW
IN TERMS OF REPULSIVE GRAVITATION ACTING AT VERY SMALL INTERBODY

DISTANCE

Irrespective of the fact that some theorists agree or not, Einstein’s GRT acquires an alternative
interpretation in the framework of the doctrine of bimetrism. Bimetrism is a concept, used for the first time
in 1922 by the mathematician Alfred Whitehead, in conjunction with an actio-in-distance theory of
gravitation, in view of ensuring a more natural incorporation of the inertia principle into the relativistic
theory of gravitation [21]. By inserting a flat metric, besides the curved one, Whitehead intended to avoid
some inherent difficulties, yielded by the geometry depending on the position and motion of masses. In 1940,
Nathan Rosen has the inspired idea to apply the concept of bimetrism just to the GRT [22]. In 1963, he
extended his study acquiring new noteworthy results [23]. Among the relevant achievements, brought by us
in the field of bimetrism of GRT, we may mention 1) The gravitational energy tensor (Ioan Gottlieb and
Nicholas Ionescu-Pallas, 1986) [24]; 2) Gravitational Lorentz force (Nicholas Ionescu-Pallas, 1993) [2].

So far, nobody tried to explain, in the framework of bimetrism, the existence of the black holes. This
lateness was determined by the missing of the point-like black hole concept. The common opinion among
specialists is, in present, that the black holes may exist only as some rigid balls of finite radial size. As the
radial size is not a gauge invariant quantity, there is no scientific argument for preferring a certain
geometrical picture of the black hole. In this situation, the single criteria of choosing must rely on the
physical consequences coming from the applying of a certain gauge. But, we know already that
Schwarzschild gauge leads to great difficulties, as the infinite cosmical pressure (De Donder, 1922) [5] and
the existence of two mass distribution inside a star (R. Oppenhaimer and G. Volkoff, 1939) [25]3 No such
difficulty is to be found, when the point-like black hole concept is adopted. Once the gauge 0ν + σ = ,
corresponding to the point-like black hole, was adopted, a natural explanation of the black hole in terms of
the attractive and repulsive forces may be put forward. The free falling down of a test body, in the radial
direction, in the gravitational field yielded by a point-like massive source, is described by the formulas

                                                
3 Similar difficulties are present for Schwarzschild gauge ( 0=σ ) as well as for other gauges ( λσ = , νλ = ); N.
Ionescu-Pallas, Symp. in Bistritza, 1993 and 1995.
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( )

0 0
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m Mm r U r U r G X
r r
X X c rX X

GMX

∂= − = − χ
∂

+χ = =
+ +

$$

 (15)

For 0r r= , 2
0 04.4505914( / )r GM c= , ( ) 0U r′ =  and the two kinds of forces do reciprocally cancel.

For 0r r<  the repulsive force becomes dominant, preventing the reaching of the point 0r =  in a finite time.
The gauge invariant horizon surface may be interpreted as the scattering cross section onto the repulsive
potential.

8. EXACT SCHWARZSCHILD SOLUTION INSIDE THE SOURCE IN THE NEW GAUGE AND
ITS PHYSICAL SELFCONSISTENCY

The accurate metric inside the source is close to formula (12) of the exterior metric

( ) [ ]

( ) ( )

2
2

3 2 2
4 2 4 4

0
4

2

1 , exp ( ) 1 ( ), 0,

32( ) d ( ) 8 , 4 ,

ch 2 exp / 2 ch .
2 16 2

r

E

E

e r

G G Gr r pe r r pr
c r c c

ce c H p
G

−
ν

−ν

λ

= +Φ +Φ − ν + λ = + ζ ν + σ =

π ′ζ = ≈ Φ + π ∆Φ = − π ρ

ν ν   ′ ′ ′ρ = ρ + ρ +  + ν ν ν + λ     π   

∫  (16)

It may be proved that 0Eρ =  for r R> ; moreover, by working out the necessary calculations in the
expression of Eρ  we reach the result

2
2

1 1 1( ) 3 ( )
2 2E m m m m

GMc U r p p U r O
R c

     ρ ≈ ρ − ρ + ρ − + − ρ +          
. (17)

Here 2( )U r c= Φ  is the Newton’s potential function, mρ  is the invariant rest mass density in flat space
and p is the equilibrium pressure.

Taking into account that [2]

2

0

1( )d , ( ) 3 4 d 0
2

R R

m m
r

p U r r U r p r r ′≈ − ρ ρ − π ≈  ∫ ∫ , (18)

we prove that the energy stored inside the source is the total energy expected from an ideal self-
gravitating fluid in the framework of Special Relativity Theory. The location of the total energy inside the
source, as well as the description of the gravitational field in terms of a single mass distribution, are specific
features, adequate for successfully entering upon the problem of cosmical pressure, to be found solely in the
case of the natural gauge 0ν + σ = .

9. SUCCESSFULLY SOLVING THE SEELIGER’S PRESSURE PARADOX, BY TAKING AGAIN
THE HYDRODYNAMIC MODEL IN THE CONDITION OF THE NEW GAUGE

Assuming .constρ =  and 2/E cρ ≈ ρ  one obtains for r R<

2 2
3 2

2 2 2 2 2

3 1 4 1, , , 1 .
2 2 3 1 / /

GM r GMM R p c
c R R c R R

 + Φ +Φ Φ ≈ − ≈ πρ µ = =ρ −    + µ + µ   
 (19)
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For 2( / ) 1GM c R << , 2 2 2 2(2 /3) (1 / )p G R r R→ π ρ − ; for R →∞ , 2 / 2p c→ρ . It is for the first time
that a reliable solution of the gravitational paradox is delivered in the framework of GRT, using the classical
concept of local equilibrium between gravitational and fluidodynamic forces. The finiteness of the cosmical
pressure is a direct consequence of the non-linear relationship between pressures p  and potential Φ , which,
in its turn, is a consequence of the existence of point-like black hole.

10. GAUGE AS FIRST ORDER PARTIAL DERIVATIVE EXPRESSION, NECESSARY FOR
COMPLETING THE DEFINITION OF GRAVITATIONAL FIELDS

The only inconvenient aspect of the point-like black hole theory, so far outlined, is the non covariant
form of the assumed gauge ( 0ν + σ = ). This may be easily remedied by resorting to Rosen’s bimetrism [22,
23]. According to this doctrine, we define simultaneously two metrics – a curved one, including the
gravitational field, and a flat one, in the absences of gravitation,

2 2d d d 0, d d d 0C Fs g x x s a x xα β α β
αβ αβ= > = > , (20)

using the same set of coordinates (for instance spherical ones or Cartesian ones). The quantity
/J g a= − −  is a Minkowskian invariant and the same property should be assigned to any scalar ( )JΛ .

As the gauge condition may be a differential equation with first order partial derivatives, we are entitled to
write

/ 0, ( )J g J aαβ αβ αβ αβ
β = = + ΛH H . (21)

Further on, we determine the function ( )JΛ  asking the recovering of the known integrability
condition, in the case of spherical coordinates. Thus, one obtains:

1) De Donder-Lanczos-Rosen-Fock gauge [5, 26, 22, 27]

0, 1ν + λ = Λ = ; (22a)

2) Weyl gauge

( )
24 10, (2 ) 1 1 , 1

4
J

r
µ λ − σ = = −Λ + Λ − Λ = +   

; (22b)

3) Natural gauge
11

1 2 22
2

2

10, , 1J
r
µ  ν + σ = = Λ + Λ − Λ = +   Λ   

. (22c)

The relationship between J  and Λ  is obtained by eliminating r  between ( )J r  and ( )rΛ . ( )J r  is
obtained, in its turn, though the intermediary of ( )f r  as 2( ) ( / ) ( )J r f r f r′= , with ( )sr f r= , id est:

1)
2

0, ( ) 1J r
r
µ ν + λ = = +  

(23a)

2)

21 1
2 24 4

2 2
0, ( ) 1 1J r

r r r

− 
µ µ µ    ν + σ = = + + +         

(23b)
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3)
4 2

2

1 10, ( ) 1 1
2 4

J r
r r
µ µ  λ − σ = = + −      

(23c)

The derivative in (21) is covariant in flat space-time. The formulation of the Weyl gauge in the form
(21) is for the first time given in this work.

11. GAUGE INDEPENDENT AND GAUGE DEPENDENT PHYSICAL EFFECTS

The various physical effects, whose explanation is given by resorting to one body metric, may be
shared in two categories: 1) Gauge invariant effects and 2) Gauge dependent effects. The famous tests of
GRT [a) Perihelion advance, b) gravitational bending of a light ray and c) gravitational red shift of light]
belong to the first category. Using the notations we already adopted: ( )sr f r= , and assuming

2( ) / 1 ( / ) ( / ) .....f r r r r= + α µ +β µ + , we proved that, in the firs relativistic approximation, the values for the
three tests are not α -dependent, although the motion equation exhibits such dependence [29]. Independence
of the tests on the η  function was also studied

2 2
0 0

1 2 3 43 2 2 2 2 3

0
1 2 3 4 2

( )1 2 2 2 2 ( ) ,

1 31, 1 , (1 ), 1, .
2 2

GM GMC C C C
r r c c r c r

GMC C C C
c

 
= − − + − + 

 

= + = − = − = + =

µ

α α α α µ

υ υra r υr υ
 (24)

The fourth test (I. Shapiro, 1964) [13] has an intermediary position between the two mentioned
categories of effects, as far as it turns out to be slightly α -dependent [29]. Concerning the gauge dependent
effects, we have to point out, above all, the necessity to use a frame of inertia. Among the effects pertaining
to this category, we mention: a) pressure finiteness in an infinite fluid medium, b) equilibrium of a self-
gravitating fluid sphere in terms of a single mass density, c) non-contradictory falling down in gravitational
field [28]. All these effects are very sensitive to small departures of the frame from the rigorous state of
inertia. This critical aspect prevents us from the using of approximate expressions of ( )f r  derived from
many-body studies [31]. For evaluating such effects we need not only few terms in the expression of ( ) /f r r ,
but the sum of the infinite series. Owing to the very tedious calculations in gravitational many-body systems,
this seems to be impossible.

12. PARAMETRIZED GAUGE. ATTEMPT TO DETERMINE THE GAUGE FROM THE
COSMICAL CONSTRAINT OF PRESSURE FINITENESS

However, assuming the constraint [ ]lim ( ) /( )
R

f r r
→∞

Φ = finite quantity, we may enter upon a study whose

conclusion is more reliability for the natural gauge. The starting point, complying with the conjecture about
the behavior at infinity, is 2 2 1/ 2( ) / (1 2 / ) ( / )f r r r r= + βµ +α µ ≈  21 ( / ) ( / ) ...r r+α µ +β µ + .
Accordingly, inside the spherical source, we have

2
2

2

1 2 (2 )( ) exp 1 2 ; e 1 2 exp ,
2 2 1 2

f r
r r

ν + βΦ − −α Φσ µ σ   → = + βΦ +αΦ → − − →       + βΦ +αΦ
whence

2 2

2 2

1 2 (2 )

1 2 1 2 (2 )
eν

 + β− −α Φ =
   + βΦ +αΦ + βΦ + −α Φ   

. (25)
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The pressure inside a spherical source of radius R , at equilibrium, for constant mass density ρ , is
given by the formulas

[ ]
[ ] ( ) ( )

( ) ( )

22
2 2

2 2

2

2

1 2 (2 ) /exp (1/ 2) ( )
1 1 , ,

exp (1/ 2) ( ) 1 2 (2 )

1 2
( , ), ( , ) ( ,2 ).

1 2 / /

Rr
p c c A B C A

R

B B C C B
R R

 + β − − α µ − ν  = ρ − = ρ − = − ν  + β − − α Φ    

+ βΦ + αΦ
= ≡ β α = β α = β −α

+ β µ + α µ

(26)

We distinguish two cases:
Case 1)

2

2

2 (2 ) 0, 2 0, 2 2 0,
( / ) 2 3 3lim , lim , ,

3 ( / ) 2 2

2 3 3 1 0.
3 2 2

R R

rA B C B
r

p c

→∞ →∞

β− −α > α + β > −α + β >
µ Φ→ → → → → →
Φ µ

 
→ρ − =   

As this case is unphysical, we examine the following
Case 2)

22 (2 ) 0, 2 0, 2 2 0.β− − α = α + β > − α + β >

Thus, one obtains

( )

2

2 2

1 (2 ) 0, 2,
2

13/ 2 3/ 2 1 .
2

p c c

β = −α = α ≠

→ρ − = ρ
 (27)

There are two alternatives emerging from this case: either 1α = , 1/ 2β =  (i.e. natural gauge), or
1α = − , 9 / 2β =  (scalar gravitation [34]). The special case 2α = , 0β =  leads also to a finite value of

pressure ( )2 3/ 2 1p c=ρ − , but the position space is not isotropic with respect to a light ray propagation.

This case corresponds to the elimination of the inaccessible space of the Schwarzschild metric, without
associating this transformation with the recovering of the inertia frame. Owing to the Weyl’s condition
concerning the existence of gravitational waves [35], id est 1α = , the only possible determination of the
constant is that corresponding to natural gauge ( 1, 1/ 2)α = β = .

13. CONCLUDING REMARKS

It is useful to summarize the main consequences, coming as a result of adopting the natural gauge
( 0ν + σ = ).
1. The entire three-dimensional space of position, excepting for the origin ( 0r = ), is accessible to physical

experience.
2. Seeliger’s gravitational paradox is avoided, allowing to devise a model of matter, filling up

homogeneously and isotropically the infinite three-dimensional space, and lying permanently in a stable
mechanical equilibrium, as a result of cancellation between attractive forces of the Newtonian type and
repulsive forces of the Eulerian type. The equilibrium pressure is 16~10 atm− .

3. The unphysical picture of the interior region of a star, in terms of two mass densities, pointed out for the
first time in 1939 by J. R. Oppenheimer and G. M. Volkoff, is avoided.
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4. There is full compliance between natural gauge and black hole physics (which is based essentially on
gauge invariant properties).

5. It is possible to “derive” even the famous Bekenstein-Hawking mass formula, provided that the space
region, close to the horizon surface, should be discretized.

6. The bi-dimensional infinitesimal invariant, associated with a gravitational rotator, does not depend on
the mass of source-body.

7. Te position subspace is almost conform onto the three-dimensional Euclidian space.
8. The one body metric is almost functional, id est the metric functions ( , ,ν λ σ ) may be written as

( )ν ≈ ν Φ , ( )λ ≈ λ Φ  and ( )σ ≈ σ Φ , Φ  being the gravitational potential.
9. Natural gauge goes asymptotically into De Donder-Lanczos-Rosen-Fock gauge for r →∞ .
10. Natural gauge may be written as the vanishing divergence of a certain Minkowskian tensor, in close

analogy to De Donder-Lanczos-Rosen-Fock gauge.
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