MULTIOBJECTIVE PROGRAMMING PROBLEMS WITH GENERALIZED V-TYPE-I UNIVEXITY AND RELATED n-SET FUNCTIONS

Vasile PREDA * , Ioan M. STANCU-MINASIAN ${ }^{* *}$, Miruna BELDIMAN ${ }^{*}$, Andreea Mădălina STANCU *
*University of Bucharest, Faculty of Mathematics and Informatics,
Str. Academiei 14, Ro-010014, Bucharest, Romania
**The Romanian Academy, Institute of Mathematical Statistics and Applied Mathematics, Calea 13 Septembrie nr. 13, Ro-050711, Bucharest 5, Romania, E-mail: stancum@csm.ro

We study optimality conditions and generalized Mond-Weir duality for multiobjective programming
involving n-set functions which satisfy appropriate generalized V-type-I univexity conditions.
Key words: optimality, duality, multiobjective programming, n-set function, generalized V-type-I univexity.

1. PRELIMINARIES

Let \mathbb{R}^{n} be the n-dimensional Euclidean space and \mathbb{R}_{+}^{n} its positive orthant, i.e.

$$
\mathbb{R}_{+}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, x_{j} \geqq 0, j=1, \ldots, n\right\}
$$

For any vectors $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{n}$, we use the following notation: $x<y$ if $x_{i}<y_{i}, i=1,2, \ldots, n ; x \leqq y$ iff $x_{i} \leqq y_{i}, i=1,2, \ldots, n ; x \leq y$ if $x \leqq y$, but $x \neq y ; x^{\top} y=\sum_{i=1}^{n} x_{i} y_{i}$.

For an arbitrary vector $x \in \mathbb{R}^{n}$ and a subset J of the index set $\{1,2, \ldots, n\}$, we denote by x_{J} the vector with components $x_{j}, j \in J$.

Let (X, Γ, μ) be a finite atomless measure space and assume that $L_{1}(X, \Gamma, \mu)$ is a separable function space. For $h \in L_{1}(X, \Gamma, \mu)$ and $Z \in \Gamma$ with indicator function $I_{Z} \in L_{\infty}(X, \Gamma, \mu)$, the integral $\int_{Z} h \mathrm{~d} \mu$ will be denoted by $\left\langle h, I_{Z}\right\rangle$.

Now, we shall define the notion of differentiability for n-set functions. Morris [7] introduced differentiability for set functions and Corley [4] defined this notion for n-set functions.

A function $\varphi: \Gamma \rightarrow \mathbb{R}$ is said to be differentiable at T if there exists $D \varphi_{T} \in L_{1}(X, \Gamma, \mu)$, called the derivative of φ at T, such that

$$
\varphi(S)=\varphi(T)+\left\langle D \varphi_{T}, I_{S}-I_{T}\right\rangle+\psi(S, T)
$$

for each $S \in \Gamma$, where $\psi: \Gamma \times \Gamma \rightarrow \mathbb{R}$ and has the property that $\psi(S, T)$ is $o(d(S, T))$, that is $\lim _{d(S, T) \rightarrow 0} \psi(S, T) / d(S, T)=0$, and d is a pseudometric on $\Gamma[7]$.

A function $h: \Gamma^{n} \rightarrow \mathbb{R}$ is said to have a partial derivative at $S^{0}=\left(S_{1}^{0}, \ldots, S_{n}^{0}\right)$ with respect to its k-th argument, $1 \leqq k \leqq n$, if the function

$$
\varphi\left(S_{k}\right)=h\left(S_{1}^{0}, \ldots, S_{k-1}^{0}, S_{k}, S_{k+1}^{0}, \ldots, S_{n}^{0}\right)
$$

has derivative $D \varphi_{s_{k}^{0}}$, and we define $D_{k} h\left(S^{0}\right)=D \varphi_{s_{k}^{0}}$. If the $D_{k} h\left(S^{0}\right), 1 \leqq k \leqq n$, all exist, then we put $D h\left(S^{0}\right)=\left(D_{1} h\left(S^{0}\right), \ldots, D_{n} h\left(S^{0}\right)\right)$.If $H: \Gamma^{n} \rightarrow \mathbb{R}^{m}, H=\left(H_{1}, \ldots, H_{m}\right)$, we put $D_{k} H\left(S^{0}\right)=\left(D_{k} H_{1}\left(S^{0}\right)\right)$.

A function $h: \Gamma^{n} \rightarrow \mathbb{R}$ is said to be differentiable at $S^{0} \in \Gamma^{n}$ if there exist $D h\left(S^{0}\right)$ and $\psi: \Gamma^{n} \times \Gamma^{n} \rightarrow \mathbb{R}$ such that

$$
h(S)=h\left(S^{0}\right)+\sum_{k=1}^{n}\left\langle D_{k} h\left(S^{0}\right), I_{S_{k}}-I_{S_{k}^{0}}\right\rangle+\psi\left(S, S^{0}\right)
$$

where $\psi\left(S, S^{0}\right)$ is $o\left[d\left(S, S^{0}\right)\right]$ for all $S \in \Gamma^{n}$.
A vector set function $f=\left(f_{1}, \ldots, f_{p}\right): \Gamma \rightarrow \mathbb{R}^{p}$ is differentiable on Γ if all its component functions f_{i}, $1 \leqq i \leqq p$, are differentiable on Γ.

In this paper we consider the n-set function multiobjective optimization problem
(VP)

$$
\operatorname{minimize}\left\{f(S)=\left(f_{1}(S), \ldots, f_{p}(S)\right) \mid g(S) \leqq 0, S \in \Gamma^{n}\right\} \text {, }
$$

where $f: \Gamma^{n} \rightarrow \mathbb{R}^{p}$ and $g: \Gamma^{n} \rightarrow \mathbb{R}^{m}$ are differentiable n-set functions on Γ^{n}. The problem is to find the collection of (properly) efficient sets defined below.

Let $\mathcal{P}=\left\{S \in \Gamma^{n} \mid g(S) \leqq 0\right\}$ be the set of all feasible solutions for problem (VP).
Definition 1.1. A feasible solution $S^{0} \in \mathcal{P}$ is said to be an efficient solution (Pareto solution) for problem (VP) if there exists no other feasible solution $S \in \mathcal{P}$ such that $f(S) \leq f\left(S^{0}\right)$.

Definition 1.2. An efficient solution S^{0} to $(V P)$ is called properly efficient, if there exists a positive number M with the property that, if $f_{i}(S)<f_{i}\left(S^{0}\right)$, for each i and $S \in P$, then $\frac{f_{i}\left(S^{0}\right)-f_{i}(S)}{f_{j}(S)-f_{j}\left(S^{0}\right)} \leqq M$ for some j for which $f_{j}(S)>f_{j}\left(S^{0}\right)$.

We shall consider a partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$ of the index set $\{1,2, \ldots, m\}$, that is, $\bigcup_{s=0}^{k} J_{s}=\{1,2, \ldots, m\}$, and $J_{s} \cap J_{t}=\varnothing$ for any $s \neq t$. Put

$$
\psi_{i}\left(S, \lambda_{J_{0}}\right)=f_{i}(S)+\lambda_{J_{0}}^{\top} g_{J_{0}}(S)
$$

for any $i, 1 \leqq i \leqq p$, where $\lambda \in \mathbb{R}_{+}^{m}$ is a given vector. Moreover, we consider vectors $\rho=\left(\rho_{1}, \ldots, \rho_{p}\right) \in \mathbb{R}^{p}, \rho^{\prime}=\left(\rho_{1}^{\prime}, \ldots, \rho_{k}^{\prime}\right) \in \mathbb{R}^{k}$, and real numbers $\rho_{0}, \rho_{0}^{\prime} \in \mathbb{R}$.

The following definitions extend similar concepts defined by Jeyakumar and Mond [5], Mishra et al. [6] and Bătătorescu [1],[2],[3].

Definition 1.3. We say that problem (VP) is $\left(\rho, \rho^{\prime}\right)$-V-univex type I at $S^{0} \in \mathcal{P}$ according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$ if there exist positive real functions $\alpha_{1}, \ldots, \alpha_{p}$ and $\beta_{1}, \ldots, \beta_{m}$ defined on $\Gamma^{n} \times \Gamma^{n}$,
nonnegative functions b_{0} and b_{1}, also defined on $\Gamma^{n} \times \Gamma^{n}, \varphi_{0}: \mathbb{R} \rightarrow \mathbb{R}, \varphi_{1}: \mathbb{R} \rightarrow \mathbb{R}$, and a vector $\lambda \in \mathbb{R}_{+}^{m}$ such that

$$
\begin{equation*}
b_{0}\left(S, S^{0}\right) \varphi_{0}\left[\psi_{i}\left(S, \lambda_{J_{0}}\right)-\psi_{i}\left(S^{0}, \lambda_{J_{0}}\right)\right] \geqq \alpha_{i}\left(S, S^{0}\right) \sum_{t=1}^{n}\left\langle D_{t} \psi_{i}\left(S^{0}, \lambda_{J_{0}}\right), I_{S_{t}}-I_{S_{i}^{0}}\right\rangle+\rho_{i} d^{2}\left(S, S^{0}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
-b_{1}\left(S, S^{0}\right) \varphi_{1}\left[\sum_{j \in J_{s}} \lambda_{j} g_{j}\left(S^{0}\right)\right] \geqq \beta_{s}\left(S, S^{0}\right) \sum_{j \in J_{s}} \lambda_{j} \sum_{i=1}^{n}\left\langle D_{t} g_{j}\left(S^{0}\right), I_{S_{t}}-I_{S_{t}^{0}}\right)+\rho_{s}^{\prime} d^{2}\left(S, S^{0}\right) \tag{2}
\end{equation*}
$$

for any $S \in \mathcal{P}, i \in\{1, \ldots, p\}$, and $s \in\{1, \ldots, k\}$.
If (VP) is $\left(\rho, \rho^{\prime}\right)$-V-univex type I at all $S^{0} \in \mathcal{P}$, according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, then we say that (VP) is $\left(\rho, \rho^{\prime}\right)$-V-univex type I on \mathcal{P}, according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$.

If strict inequality holds in (1) (whenever $S \neq S^{0}$), then we say that (VP) is $\left(\rho, \rho^{\prime}\right)$ - semi strictly Vunivex type I at S^{0} or on \mathcal{P} according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, depending on the case.

Definition 1.4. We say that problem $(V P)$ is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$-quasi V-univex type I at $S^{0} \in \mathcal{P}$ according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$ if there exist positive real functions $\alpha_{1}, \ldots, \alpha_{p}$ and $\beta_{1}, \ldots, \beta_{m}$ defined on $\Gamma^{n} \times \Gamma^{n}$, nonnegative functions b_{0} and b_{1}, also defined on $\Gamma^{n} \times \Gamma^{n}, \varphi_{0}: \mathbb{R} \rightarrow \mathbb{R}, \varphi_{1}: \mathbb{R} \rightarrow \mathbb{R}$, such that for some vectors $\tau \in \mathbb{R}_{+}^{p}$ and $\lambda \in \mathbb{R}_{+}^{m}$ the implications

$$
\begin{align*}
& b_{0}\left(S, S^{0}\right) \varphi_{0}\left[\sum_{i=1}^{p} \tau_{i} \alpha_{i}\left(S, S^{0}\right)\left[\psi_{i}\left(S, \lambda_{J_{0}}\right)-\psi_{i}\left(S^{0}, \lambda_{J_{0}}\right)\right]\right] \leqq 0 \tag{3}\\
& \Rightarrow \sum_{i=1}^{p} \tau_{i} \sum_{i=1}^{n}\left\langle D_{t} \psi_{i}\left(S^{0}, \lambda_{J_{0}}\right), I_{S_{t}}-I_{S_{i}}\right) \leqq-\rho_{0} d^{2}\left(S, S^{0}\right), \forall S \in \mathcal{P},
\end{align*}
$$

and

$$
\begin{align*}
& b_{1}\left(S, S^{0}\right) \varphi_{1}\left[\sum_{s=1}^{k} \beta_{s}\left(S, S^{0}\right) \sum_{j \in J_{s}} \lambda_{j} g_{j}\left(S^{0}\right)\right] \leqq 0 \tag{4}\\
& \Rightarrow \sum_{j=1, j \in J_{0}}^{m} \lambda_{j} \sum_{t=1}^{n}\left\langle D_{t} g_{j}\left(S^{0}\right), I_{S_{t}}-I_{S_{t}^{0}}\right\rangle \leqq-\rho_{0}^{\prime} d^{2}\left(S, S^{0}\right), \forall S \in \mathcal{P},
\end{align*}
$$

both hold.
If (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$-quasi V -univex type I at all $S^{0} \in \mathcal{P}$ according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, then we say that (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$-quasi V-univex type I on \mathcal{P} according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$.

If the second (implied) inequality in (3) is strict ($S \neq S^{0}$), then we say that (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$ - semi strictly quasi V-univex type I at S^{0} or on \mathcal{P} according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, depending on the case.

Definition 1.5. We say that problem (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$-pseudo V-univex type I at $S^{0} \in \mathcal{P}$ according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, if there exist positive real functions $\alpha_{1}, \ldots, \alpha_{p}$ and $\beta_{1}, \ldots, \beta_{m}$ defined on $\Gamma^{n} \times \Gamma^{n}$, nonnegative functions b_{0} and b_{1}, also defined on $\Gamma^{n} \times \Gamma^{n}, \varphi_{0}: \mathbb{R} \rightarrow \mathbb{R}, \varphi_{1}: \mathbb{R} \rightarrow \mathbb{R}$, such that for some vectors $\tau \in \mathbb{R}_{+}^{p}, \lambda \in \mathbb{R}_{+}^{m}$ and $\forall S \in \mathcal{P}$, the implications

$$
\begin{align*}
& \sum_{i=1}^{p} \tau_{i} \sum_{t=1}^{n}\left\langle D_{t} \psi_{i}\left(S^{0}, \lambda_{J_{0}}\right), I_{S_{t}}-I_{S_{t}^{0}}\right) \leqq-\rho_{0} d^{2}\left(S, S^{0}\right) \Rightarrow \\
& b_{0}\left(S, S^{0}\right) \varphi_{0}\left[\sum_{i=1}^{p} \tau_{i} \alpha_{i}\left(S, S^{0}\right)\left[\psi_{i}\left(S, \lambda_{J_{0}}\right)-\psi_{i}\left(S^{0}, \lambda_{J_{0}}\right)\right]\right] \geqq 0, \tag{5}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{j=1, j \notin J_{0}}^{m} \lambda_{j} \sum_{t=1}^{n}\left\langle D_{t} g_{j}\left(S^{0}\right), I_{S_{t}}-I_{S_{i}^{0}}\right\rangle \geqq-\rho_{0}^{\prime} d^{2}\left(S, S^{0}\right) \Rightarrow \\
& b_{1}\left(S, S^{0}\right) \varphi_{1}\left[\sum_{s=1}^{k} \beta_{s}\left(S, S^{0}\right) \sum_{j \in J_{s}} \lambda_{j} g_{j}\left(S^{0}\right)\right] \leqq 0, \tag{6}
\end{align*}
$$

both hold.
If (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$ - pseudo V-univex type I at all $S^{0} \in \mathcal{P}$ according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, then we say that (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$ - pseudo V -univex type I on \mathcal{P} according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$.

If the second (implied) inequality in (5) is strict $\left(S \neq S^{0}\right)$, then we say that (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$-semistrictly pseudo V-univex type I in f (in g) at S^{0} or on \mathcal{P} according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, depending on the case.

If the second (implied) inequalities in (5) and (6) are both strict, then we say that (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$ strictly pseudo V-univex type I at S^{0} or on \mathcal{P} according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, depending on the case.

Definition 1.6. We say that problem (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$-quasi pseudo V-univex type I at $S^{0} \in \mathcal{P}$ according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$ if there exist positive real functions $\alpha_{1}, \ldots, \alpha_{p}$ and $\beta_{1}, \ldots, \beta_{m}$ defined on $\Gamma^{n} \times \Gamma^{n}$, nonnegative functions b_{0} and b_{1}, also defined on $\Gamma^{n} \times \Gamma^{n}, \varphi_{0}: \mathbb{R} \rightarrow \mathbb{R}, \varphi_{1}: \mathbb{R} \rightarrow \mathbb{R}$, such that for some vectors $\tau \in \mathbb{R}_{+}^{p}$ and $\lambda \in \mathbb{R}_{+}^{m}$ the implications

$$
\begin{align*}
& b_{0}\left(S, S^{0}\right) \varphi_{0}\left[\sum_{i=1}^{p} \tau_{i} \alpha_{i}\left(S, S^{0}\right)\left[\psi_{i}\left(S, \lambda_{J_{0}}\right)-\psi_{i}\left(S^{0}, \lambda_{J_{0}}\right)\right]\right] \leqq 0 \tag{7}\\
\Rightarrow & \sum_{i=1}^{p} \tau_{i} \sum_{t=1}^{n}\left\langle D_{t} \psi_{i}\left(S^{0}, \lambda_{J_{0}}\right), I_{S_{t}}-I_{S_{i}}\right) \leqq-\rho_{0} d^{2}\left(S, S^{0}\right), \forall S \in \mathcal{P}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{j=1, j \neq J_{0}}^{m} \lambda_{j} \sum_{t=1}^{n}\left\langle D_{t} g_{j}\left(S^{0}\right), I_{S_{t}}-I_{S_{i}^{0}}\right\rangle \geqq-\rho_{0}^{\prime} d^{2}\left(S, S^{0}\right) \Rightarrow \\
& b_{1}\left(S, S^{0}\right) \varphi_{1}\left[\sum_{s=1}^{k} \beta_{s}\left(S, S^{0}\right) \sum_{j \in J_{s}} \lambda_{j} g_{j}\left(S^{0}\right)\right] \leqq 0, \forall S \in \mathcal{P}, \tag{8}
\end{align*}
$$

do hold.
If (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$-quasi pseudo V-univex type I at all $S^{0} \in \mathcal{P}$ according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, then we say that (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$-quasi pseudo V-univex type I on \mathcal{P} according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$.

If the second (implied) inequality in (2) is strict $\left(S \neq S^{0}\right)$, then we say that (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$-quasi strictly pseudo V-univex type I at S^{0} or on \mathcal{P}, according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, depending on the case.

Definition 1.7. We say that problem (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$-pseudo quasi V-univex type I at $S \in \mathcal{P}$ according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$ if there exist positive real functions $\alpha_{1}, \ldots, \alpha_{p}$ and $\beta_{1}, \ldots, \beta_{m}$ defined on $\Gamma^{n} \times \Gamma^{n}$, nonnegative functions b_{0} and b_{1}, also defined on $\Gamma^{n} \times \Gamma^{n}, \varphi_{0}: \mathbb{R} \rightarrow \mathbb{R}, \varphi_{1}: \mathbb{R} \rightarrow \mathbb{R}$, such that for some vectors $\tau \in \mathbb{R}_{+}^{p}, \lambda \in \mathbb{R}_{+}^{m}$ and $\forall S \in \mathcal{P}$, the implications

$$
\begin{gather*}
\sum_{i=1}^{p} \tau_{i} \sum_{t=1}^{n}\left\langle D_{t} \psi_{i}\left(S^{0}, \lambda_{J_{0}}\right), I_{S_{t}}-I_{S_{t}}\right) \geqq-\rho_{0} d^{2}\left(S, S^{0}\right) \Rightarrow \\
b_{0}\left(S, S^{0}\right) \varphi_{0}\left[\sum_{i=1}^{p} \tau_{i} \alpha_{i}\left(S, S^{0}\right)\left[\psi_{i}\left(S, \lambda_{J_{0}}\right)-\psi_{i}\left(S^{0}, \lambda_{J_{0}}\right)\right)\right] \geqq 0 \tag{9}
\end{gather*}
$$

and

$$
\begin{align*}
& b_{1}\left(S, S^{0}\right) \varphi_{1}\left[\sum_{s=1}^{k} \beta_{s}\left(S, S^{0}\right) \sum_{j \in J_{s}} \lambda_{j} g_{j}\left(S^{0}\right)\right] \geqq 0 \Rightarrow \tag{10}\\
& \sum_{j=1, j \notin J_{0}}^{m} \lambda_{j} \sum_{t=1}^{n}\left\langle D_{t} g_{j}\left(S^{0}\right), I_{S_{t}}-I_{S_{t}^{0}}\right) \leqq-\rho_{0}^{\prime} d^{2}\left(S, S^{0}\right)
\end{align*}
$$

do hold.
If (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$-pseudo quasi V -univex type I at all $S^{0} \in \mathcal{P}$ according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, then we say that (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$-pseudo quasi V-univex type I on \mathcal{P} according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$.

If the second (implied) inequality in (9) is strict $\left(S \neq S^{0}\right)$, then we say that (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$-strictly pseudo quasi V-univex type I at S^{0} or on \mathcal{P} according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, depending on the case.

Remark 1.8. If we take in the above definitions $J_{0}=\varnothing, k=m$ and $J_{s}=\{s\}$ for $s \in\{1,2, \ldots, m\}$, then we retrieve the concepts in Bătătorescu [1].

Remark 1.9. If we take in the above definitions $n=1, \rho_{0}=\rho_{0}^{\prime}=0$, respectively $\rho_{i}=0$ for any $i=1, \ldots, p$, and $\rho_{s}^{\prime}=0$ for any $s=1, \ldots, k$, then we retrieve the concepts in Bătătorescu [3].

2. SOME OPTIMALITY CONDITIONS

The following results give sufficient conditions for a set to be an efficient solution to problem (VP) under generalized type I conditions with respect to a partition of the constraints.

Theorem 2.1 (Sufficiency). Assume that
(a1) $S^{0} \in \mathcal{P}$;
(a2) there exist $\tau^{0} \in \mathbb{R}_{+}^{p}, \sum_{i=1}^{p} \tau_{i}^{0}=1$, and $\lambda^{0} \in \mathbb{R}_{+}^{m}$ such that

- for any $S \in \mathcal{P}$ we have

$$
\sum_{i=1}^{p} \tau_{i}^{0} \sum_{t=1}^{n}\left\langle D_{t} f_{i}\left(S^{0}\right), I_{S_{t}}-I_{s_{t}^{0}}\right\rangle+\sum_{j=1}^{m} \lambda_{j}^{0} \sum_{t=1}^{n}\left\langle D_{t} g_{j}\left(S^{0}\right), I_{S_{t}}-I_{s_{i}^{0}}\right\rangle \geqq 0,
$$

- with respect to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, we have

$$
\sum_{j \in J_{s}} \lambda_{j}^{0} g_{j}\left(S^{0}\right)=0 \text { for any } s \in\{0,1, \ldots, k\}
$$

(a3) problem (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$-quasi strictly pseudo V -univex type I at S^{0} with $\rho_{0}+\rho_{0}^{\prime} \geq 0$ according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, with respect to τ^{0}, λ^{0} and for some positive functions α_{i}, $i \in\{1, \ldots, p\}$ and $\beta_{j}, j \in\{1, \ldots, m\}$.

Further, suppose that for $r \in \mathbb{R}$, we have,

$$
\begin{gather*}
r \leqq 0 \Rightarrow \varphi_{0}(r) \leqq 0, \tag{11}\\
\varphi_{1}(r)<0 \Rightarrow r<0 \tag{12}
\end{gather*}
$$

and

$$
\begin{equation*}
b_{0}\left(S, S^{0}\right)>0, b_{1}\left(S, S^{0}\right)>0, \forall S \in \mathcal{P} \tag{13}
\end{equation*}
$$

Then S^{0} is an efficient solution to (VP).
Remark 2.2. For $n=1$ and $\rho_{0}=\rho_{0}^{\prime}=0$ we retrieve Theorem 1 of [3].
Remark 2.3. For $J_{0}=\varnothing \quad k=m$ and $J_{s}=\{s\}, \quad s \in\{1,2, \ldots, m\}$, the above result reduces to Theorem 3.1 in [3]. We easily can state sufficient optimality theorems similar to those in [1].

The next result gives necessary condition for a properly efficient solution to (VP).
Theorem 2.4 (Necessity, Zalmai [9]). Assume that
(b1) S^{0} is a properly efficient solution to (VP);
(b2) there exists $S^{*} \in \mathcal{P}$ with $g_{M_{0}}\left(S^{*}\right)<0$, where $M_{0}=\left\{j \mid g_{j}\left(S^{0}\right)=0\right\}$, such that

$$
g_{j}\left(S^{0}\right)+\sum_{t=1}^{n}\left\langle D_{t} g_{j}\left(S^{0}\right), I_{S_{i}^{*}}-I_{S_{i}^{0}}\right\rangle<0, \forall j \in\{1, \ldots, m\}
$$

Then there exist $\tau^{0} \in \mathbb{R}^{p}, \tau^{0}>0$, and $\lambda^{0} \in \mathbb{R}_{+}^{m}$ such that we have

$$
\sum_{i=1}^{p} \tau_{i}^{0} \sum_{t=1}^{n}\left\langle D_{t} f_{i}\left(S^{0}\right), I_{S_{t}}-I_{S_{t}^{0}}\right)+\sum_{j=1}^{m} \lambda_{j}^{0} \sum_{t=1}^{n}\left\langle D_{t} g_{j}\left(S^{0}\right), I_{S_{t}}-I_{S_{t}^{0}}\right\rangle \geqq 0, \mathrm{~S} \in \mathcal{P},
$$

and

$$
\lambda_{j}^{0} g_{j}\left(S^{0}\right)=0, j \in\{1, \ldots, m\}
$$

3. GENERALIZED MOND-WEIR DUALITY

With respect to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$ of its constraints, we associate with problem (VP) the following multiobjective dual problem:
$(G M W D) \quad \operatorname{maximize} \quad\left(f_{1}(T)+\lambda_{J_{0}}^{\top} g_{J_{0}}(T), \ldots, f_{p}(T)+\lambda_{J_{0}}^{\top} g_{J_{0}}(T)\right)$

$$
\text { subject to }(T, \tau, \lambda) \in \mathrm{D}
$$

where

$$
\mathrm{D}=\left\{(T, \tau, \lambda) \left\lvert\, \begin{array}{c}
\sum_{i=1}^{p} \tau_{i} \sum_{t=1}^{n}\left\langle D_{t}\left(f_{i}+\lambda_{J_{0}}^{\top} g_{J_{0}}\right)(T), I_{S_{t}}-I_{T_{t}}\right\rangle+ \\
\sum_{t=1}^{n}\left\langle D_{t} g_{j}(T), I_{S_{t}}-I_{T_{t}}\right\rangle \geqq 0, \forall S \in \Gamma^{n} \\
\lambda_{J_{s}}^{\top} g_{J_{s}}(T) \geqq 0, s=1, \ldots, k, \\
T \in \Gamma^{n}, \tau \in \mathbb{R}_{+}^{p}, e^{\top} \tau=1, \lambda \in \mathbb{R}_{+}^{m}
\end{array}\right.\right\}
$$

is the set of feasible solutions, with $e=(1, \ldots, 1)^{\top} \in \mathbb{R}^{p}$.
Theorem 3.1. (Weak duality). Assume that
(i) $S \in P$;
(i2) $(T, \tau, \lambda) \in \mathrm{D}$ and $\tau>0$;
(i3) problem (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$-pseudo quasi V -univex type I at T with $\rho_{0}+\rho_{0}^{\prime} \geq 0$ according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$ and some positive functions $\alpha_{i}, i \in\{1, \ldots, p\}, \beta_{s}, s \in\{1, \ldots, k\}$.

Further, assume that for $r \in \mathbb{R}$ we have

$$
\begin{gather*}
\varphi_{0}(r) \geqq 0 \Rightarrow r \geqq 0 \tag{14}\\
r \geqq 0 \Rightarrow \varphi_{1}(r) \geqq 0 \tag{15}
\end{gather*}
$$

and

$$
\begin{equation*}
b_{0}(S, T)>0, b_{1}(S, T) \geqq 0 . \tag{16}
\end{equation*}
$$

Then $f(S) \notin f(T)+\lambda_{J_{0}}^{\top} g_{J_{0}}(T) e$.
Theorem 3.2.(Weak duality). Assume that assumptions (i1) and (i2) of Theorem 3.1 hold. We also assume that
(i. $\left.3^{\prime}\right)$ problem (VP) is $\left(\rho, \rho^{\prime}\right)$ - semi strictly V-univex type I at T with $\sum_{i=1}^{p} \frac{\tau_{i} \rho_{i}}{\alpha_{i}(S, T)}+\sum_{s=1}^{k} \frac{\rho_{s}^{\prime}}{\beta_{s}(S, T)} \geqq 0$ according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, with respect to λ and some positive functions $\alpha_{i}^{*}, i \in\{1, \ldots, p\}$, $\beta_{s}^{*}, s \in\{1, \ldots, k\}$.

Further, assume that the functions φ_{0} and φ_{1} have the properties

$$
\begin{equation*}
\varphi_{0}(r) \geqq 0 \Rightarrow r \geqq 0 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
r \geqq 0 \Rightarrow \varphi_{1}(r) \geqq 0, \tag{18}
\end{equation*}
$$

with φ_{0} linear, and

$$
\begin{equation*}
b_{0}(S, T)>0, b_{1}(S, T) \geqq 0 \tag{19}
\end{equation*}
$$

Then $f(S) f(T)+\lambda_{J_{0}}^{\top} g_{J_{0}}(T) e$.
Theorem 3.3. (Strong duality). Assume that
(j1) S^{0} is a properly efficient solution to (VP);
(j2) there exists $S^{*} \in \mathrm{P}$ with $g_{M_{0}}\left(S^{*}\right)<0$, where $M_{0}=\left\{j \mid g_{j}\left(S^{0}\right)=0\right\}$, such that

$$
g_{j}\left(S^{0}\right)+\sum_{t=1}^{n}\left\langle D_{t} g_{j}\left(S^{0}\right), I_{S_{t}^{*}}-I_{S_{t}^{0}}\right\rangle<0, \forall j \in\{1, \ldots, m\}
$$

Then there exist $\tau^{0} \in \mathbb{R}^{p}, \tau^{0}>0$ and $\lambda^{0} \in \mathbb{R}_{+}^{m}$ such that $\left(S^{0}, \tau^{0}, \lambda^{0}\right) \in D$ and the objective functions of (VP) and (GMWD) have the same values at S^{0} and $\left(S^{0}, \tau^{0}, \lambda^{0}\right)$, respectively. If problem (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$ - pseudo quasi V -univex type I with $\rho_{0}+\rho_{0}^{\prime} \geqq 0$ at all feasible solutions of (GMWD) according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, with respect to τ^{0}, λ^{0}, and conditions (14)-(16) of Theorem 3.1 are satisfied, then $\left(S^{0}, \tau^{0}, \lambda^{0}\right) \in D$ is an efficient solution for (GMWD).

Theorem 3.4. (Strong duality). Assume that (j 1) and (j 2) of Theorem 3.3 are satisfied. Then there exist $\tau^{0} \in \mathbb{R}^{p}, \quad \tau^{0}>0$ and $\lambda^{0} \in \mathbb{R}_{+}^{m}$ such that $\left(S^{0}, \tau^{0}, \lambda^{0}\right) \in D$ and the objective functions of (VP) and (GMWD) have the same values at S^{0} and $\left(S^{0}, \tau^{0}, \lambda^{0}\right)$, respectively. If problem (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$-semi strictly V-univex type I with $\rho_{0}+\rho_{0}^{\prime} \geqq 0$ at all feasible solutions of (GMWD) according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, with respect to λ^{0}, and conditions (17)-(19) of Theorem 3.2 are satisfied, then $\left(S^{0}, \tau^{0}, \lambda^{0}\right) \in \mathrm{D}$ is an efficient solution for (GMWD).

Theorem 3.5. (Converse duality). Assume that
(k1) $\left(T^{0}, \tau^{0}, \lambda^{0}\right) \in D$ with $\tau^{0}>0$;
(k2) $T^{0} \in \mathrm{P}$;
(k3) problem (VP) is (ρ, ρ^{\prime})-V-univex type I at T^{0}, with $\sum_{i=1}^{p} \frac{\tau_{i}^{0} \rho_{i}}{\alpha_{i}\left(S, T^{0}\right)}+\sum_{s=1}^{k} \frac{\rho_{s}^{\prime}}{\beta_{s}\left(S, T^{0}\right)} \geqq 0$, according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, with respect to λ^{0} and some positive functions $\alpha_{i}, i \in\{1, \ldots, p\}$, and β_{s}, $s \in\{1, \ldots, k\}$.

Assume also that the functions φ_{0} and φ_{1} have the properties

$$
\begin{array}{cc}
r<0 \Rightarrow \varphi_{0}(r)<0 \quad ; \quad \varphi_{0}(0) \leqq 0 \quad ; \quad r_{1} \leqq r_{2} \Rightarrow \varphi_{0}\left(r_{1}\right) \leqq \varphi_{0}\left(r_{2}\right), \\
& r \leqq 0 \Rightarrow \varphi_{1}(r) \geqq 0 \tag{21}
\end{array}
$$

and

$$
\begin{equation*}
b_{0}\left(S, T^{0}\right)>0, b_{1}\left(S, T^{0}\right) \geqq 0, \forall S \in \mathrm{P} . \tag{22}
\end{equation*}
$$

Then T^{0} is an efficient solution to (VP).
If, in addition, there exist positive numbers n_{i}, m_{i} such that $n_{i}<\alpha_{i}\left(S, T^{0}\right)<m_{i}$ for all $S \in \mathrm{P}$ and $i=1, \ldots, p$, then T^{0} is properly efficient for (VP).

Theorem 3.6. (Converse duality). Assume that (k1) and (k2) of Theorem 3.5 are fulfilled and problem (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$-semi strictly pseudo V-univex type I in g, at T^{0}, with $\rho_{0}+\rho_{0}^{\prime} \geq 0$, according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, with respect to τ^{0}, λ^{0} and some positive functions $\alpha_{i}, i \in\{1, \ldots, p\}, \beta_{s}$, $s \in\{1, \ldots, k\}$.

Assume also that the functions φ_{0} and φ_{1} have the properties

$$
\begin{gather*}
\varphi_{0}(r) \geqq 0 \Rightarrow r \geqq 0, \tag{23}\\
r \geqq 0 \Rightarrow \varphi_{1}(r) \geqq 0 \tag{24}
\end{gather*}
$$

and

$$
\begin{equation*}
b_{0}\left(S, T^{0}\right)>0, b_{1}\left(S, T^{0}\right) \geqq 0, \quad \forall S \in \mathrm{P} . \tag{25}
\end{equation*}
$$

Then T^{0} is an efficient solution to (VP).
If, in addition, there exist positive numbers n_{i}, m_{i} such that $n_{i}<\alpha_{i}\left(S, T^{0}\right)<m_{i}$ for all $S \in P$ and $i \in\{1, \ldots, p\}$, then T^{0} is properly efficient for (VP).

Theorem 3.7. Assume that $(\mathrm{k} 1)$ and $(\mathrm{k} 2)$ of Theorem 3.5. are fulfilled and
($\mathrm{k} 3^{\prime}$) problem (VP) is $\left(\rho_{0}, \rho_{0}^{\prime}\right)$-strictly pseudo quasi V -univex type I at T^{0}, with $\rho_{0}+\rho_{0}^{\prime} \geq 0$, according to the partition $\left\{J_{0}, J_{1}, \ldots, J_{k}\right\}$, with respect to τ^{0}, λ^{0} and some positive functions α_{i}, $i \in\{1, \ldots, p\}, \quad \beta_{s}, s \in\{1, \ldots, k\}$.

Assume also that the functions φ_{0} and φ_{1} have the properties

$$
\begin{gather*}
r<0 \Rightarrow \varphi_{0}(r) \leqq 0 \quad ; \quad r_{1} \leqq r_{2} \Rightarrow \varphi_{0}\left(r_{1}\right) \leqq \varphi_{0}\left(r_{2}\right), \tag{26}\\
r \geqq 0 \Rightarrow \varphi_{1}(r) \geqq 0 \tag{27}
\end{gather*}
$$

and

$$
\begin{equation*}
b_{0}\left(S, T^{0}\right)>0, b_{1}\left(S, T^{0}\right) \geqq 0, \forall S \in \mathrm{P} . \tag{28}
\end{equation*}
$$

Then T^{0} is an efficient solution for (VP).
If, in addition, there exist positive numbers n_{i}, m_{i} such that $n_{i}<\alpha_{i}\left(S, T^{0}\right)<m_{i}$ for all $S \in \mathrm{P}$ and $i=1, \ldots, p$, then T^{0} is properly efficient for (VP).

The proofs will appear in [8].

REFERENCES

1. BĂTĂTORESCU A., Optimality conditions involving V-type-I univexity and set-functions. Math. Reports, 7(57) (2005)1, 1-11.
2. BĂTĂTORESCU A., Generalized duality involving V-type-I univexity and set-functions. Rev. Roumaine Math. Pures Appl. 49(2004)5-6, 433-445.
3. BĂTĂTORESCU A., Generalized duality for multi-objective programming involving set-functions. An. Univ. Bucureşti Mat, LIII(2004) (2), 181-200.
4. CORLEY H.W., Optimization theory for n-set functions. J.Math.Anal.Appl., 127(1987), 193-205.
5. JEYAKUMAR V., MOND B., On generalized convex mathematical programming. J. Austral. Math. Soc. Ser. B, 34 (1992), 4353.
6. MISHRA S.K., RUEDA N.G., GIORGI G., Multiobjective programming under generalized type I univexity. An. Univ. Bucureşti Mat, LII(2003)(2), 207-224.
7. MORRIS R.J.T., Optimal constrained selection of a measurable subset. J. Math. Anal. Appl. 70(1979)2, 546-562.
8. PREDA V., STANCU-MINASIAN I.M., BELDIMAN MIRUNA, STANCU ANDREEA MĂDĂLINA, Optimality and general Mond-Weir duality for multi-objective programming problems with n-set functions involving generalized V-type-I univexity. (Submitted).
9. ZALMAI G.J., Optimality conditions and duality for multiobjective measurable subset selection problems. Optimization, 22(1991)2, 221-238.
