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We derive Bayesian premium for a class of loss functions. An exact calculation of  Bayesian premium
is possible under restrictive circumstances only, therefore we apply a theorem of Gatto [5] in order to
derive an approximation for the premium. This approximation is based on Laplace's method, is simply
computed and allows for analytical interpretations. Different forms of weighted quadratic loss
functions are considered. We prove that the Laplace approximation of Bayesian premium does not
depend on the loss function involved in exact evaluation of the Bayesian premium if this loss function
is of weighted quadratic type or exponentially scaled.
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1. INTRODUCTION

The determination of the premium for an insured risk is one of the important problems of risk theory.
By premium calculation it is meant the determination of the adequate premium for the risk assumed by an
insured individual within a collectivity.

Moreover, if some claim experience for the given individual is available, we seek to determine the
premium which exploits these actual claim amounts. Therefore, we compute Bayesian premium which is a
premium based on claim experience and it is defined as the value which minimizes an expected loss with
respect to a posterior distribution.

An exact calculation for the Bayesian premium is possible under restrictive circumstances only,
regarding the prior distribution, the likelihood function and the loss function. That is why it would be helpful
if we had a good approximation of the Bayesian premium simply to compute and which allows for analytical
interpretations.

In order to derive an approximation for the Bayesian premium, we employ Laplace method by using a
theorem of Gatto [5]. We do this considering a weighted quadratic loss function.

Important research concerning Bayesian analysis in actuarial science is due to Bailey [1], Buhlmann
[4], Klugman [7], Makov [8], Schnieper [10].

In what concerns the use of Laplace approximation in actuarial science, we have to mention the work
of Bleistein and Handelsman [3], Tierney and Kadane [11], Gatto [5].

2. BAYESIAN PREMIUM AND ITS LAPLACE APPROXIMATION

We consider random variables 1X , 2X , …, nX  on a probability field { }Pr,,Ω K , representing the size
of claims in n  consecutive periods for a given individual. iX  takes positive real values.
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Let { }ρℑ ,,S  be a measurable space (with measure ρ ) and S→Ω:Θ  a random variable taking the
values S∈θ .

We now consider a probability measure Π  on { }ℑ,S  which is absolutely continuous with respect to ρ
and π  is its corresponding density. We say that π  is the prior density of Θ . The parameter θ  (values of Θ )
is the individual risk within a collectivity.

We assume that given θΘ =  the random variables 1X , 2X , …, nX  are independently and identically
distributed with common distribution function ( )θΘ| xFX  and density ( )θΘ| xf X  (for a fixed individual, the
claim amounts of consecutive periods are independently and identically distributed).

Let ( )nyyy ,...,, 21=y  be an observed claim experience during the last n  periods, i.e. a realization of
the conditional random vector ( )θΘ,...,, 21 == nXXXX . Denote by

( ) ( )∏
=

=
n

i
iXn yfyyyl

1
Θ21 θθ,...,,

the likelihood function. Then the posterior distribution is given by

( ) ( )yXyX =≤= θΘPrθΠΘ

and the posterior density (from Bayes' theorem) by

( ) ( ) ( )
( ) ( )∫

=

S
n

n

yyyl

yyyl

dθθπθ,...,,

θπθ,...,,
θπ

21

21
Θ yX

Next, define the loss function

++ → RR2:L

where ( )vxL ,  is the loss incurred by a decision maker taking the action v  and facing the outcome x  ( v  - the
premium paid by the insured and x  - the claim size).

Definition 2.1 The (individual) risk premium is a function +→ RSPI :  which is measurable on
{ }ℑ,S , where

( ) ( )( )θΘ,minargθ
Θ

== vXLEP
XfvI ,

or, equivalently,

( ) ( ) ( )∫=
Ω

Θ dθ,minargθ xxfvxLP XvI ,

if the expectation involved in the above expression exists.
Similarly, we define Bayesian premium.
Definition 2.2  The Bayesian premium is the measurable function ++ → RR n

BP :  given by

( ) ( )( )( )yXy
X

== vPLEP IvB ,Θminarg
Θπ

or, equivalently,

( ) ( )( ) ( )∫=
S

IvB vPLP dθθπ,Θminarg Θ yy X ,

if the expectation involved in the above expression exists.
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Note that the Bayesian premium is the real number ( )yBP  minimizing the posterior expected loss
( )( )( )yX

X
=vPLE I ,Θ

Θπ
 over v , where IP  is the individual risk premium.

Remark 2.1 In fact, the Bayesian premium is

( ) ( )( )( )yXy
X

== vPLEP IvB ,Θminarg 2πΘ
,

where

( ) ( )( )θΘ,minargθ 1Θ
== vXLEP

XfvI

and ++ → RR 2
21 :, LL  are loss functions not necessarily identical.

If nothing else is mentioned, we will consider that 21 LL ≡ .

In order to compute the Bayesian premium, we need to evaluate the integral ( )( ) ( )∫
S

I vPL dθθπ,θ Θ yX .

This could be solved analitically under rather restrictive circumstances only, which concerns the choice of
the loss function and the prior density, and the likelihood function giving the posterior density. Anyway, this
choice should be based on objective criteria, possibly related to the real environment of the insurer, rather
than on the feasibility of the ensuing calculations.

Of course, numerical integration (whenever it is possible) provides the most general solutions, but they
do not yield an analytical result which would allow for interpretations.

In this context, the Laplace method gives an asymptotic approximation of the integral above, with a
small asymptotic relativ error and this allows to obtain an accurate asymptotic approximation of the Bayesian
premium (Gatto [5]).

The results obtained in this paper are based on the result below.
Theorem 2.1 (Gatto [5]) Let ( )nyyy ,...,, 21=y  denote a realization of nXXX ,...,, 21  given a fixed

value of θΘ = , ( )θΘ,...,, 21 == nXXXX  and suppose that ( )yX θΠ |Θ  is an absolutely continuous

distribution with density ( )yX θπ |Θ  which is positive over an interval ( )ba, . If ( )yX θπ |Θ  is differentiable

over ( )ba, , has a unique maximum at ( )ba,θ~ ∈ , θ~  is the only point satisfying ( ) 0θ~π
θ Θ =

∂
∂ yX , and

( )
θ~θ

|Θ2

2

θπ
θ =∂
∂ yX  exists and is strictly negative, then

( ) ( )( )vPLP IvB ,θ~minarg~y   as ∞→n .

(i.e. ( )
( )( ) 1

,θ~minarg ∞→
→

n
Iv

B

vPL
P y ).

Theorem (Bleistein, Handelsman – 1986) Let ( ) +→ Rbag ,:  be a differentiable function over ( )ba,

such that it has a unique minimum at an interior point θ~  which is the only point satisfying ( ) 0θ~
θ

=
∂
∂ g  and

( )
θ~θ

2

2

θ
θ =∂
∂ g  exists and is strictly positive. If ( ) ++ →× RRbah ,:  is differentiable with respect to the first

argument on ( )ba, , then

( ) ( ) ( ) ( )θ~θ ,θ~minarg~dθ,θminarg ng

v

ng

v
evhevh −−∫   as ∞→n .
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In fact, these authors prove that ( ) ( ) ( ) ( )






+= −−∫ n

Oevhevh ng

v

ng

v

1,θ~minargdθ,θminarg θ~θ . It should be

mentioned that the error term contains v , otherwise the approximation would be an exact one.
The above result is based on Laplace's method of approximation. Briefly, this means that g  and h  are

approximated by a Taylor polynomial of order 2 around θ~  and then their product is integrated on a small
neighborhood of  θ~ .

Remark 2.3  If the loss function involved in the calculation of Bayesian premium is ( )vxL ,2  different
than the one involved in individual risk premium, ( )vxL ,1 , then, under the assumptions of  Theorem 2.1 we
get

( ) ( )( )vPLP IvB ,θ~minarg~ 2y  as ∞→n .

Remark 2.4  θ~  from Theorem 2.1 is the posterior mode of Θ  given yX = .
Gatto [5] proposed an alternative approximation of Bayesian premium as

( ) ( )( )vPLP IvB ,θ̂minarg~y  as ∞→n ,

where θ̂  is the maximum likelihood estimate of  the risk parameter θ  (i.e. the solution of the

likelihood equation ( ) 0θ,...,,
θ 21 =

∂
∂

nyyyl ). The main disadvantage of this approximation is that the prior

information is lost.
Denote

( ) ( )( )vPLP IvL ,θ~minarg 2
1 =y  or ( ) ( )( )vPLP IvL ,θ~minarg1 =y  (if 21 LL ≡ )

and

( ) ( )( )vPLP IvL ,θ̂minarg 2
2 =y  or ( ) ( )( )vPLP IvL ,θ̂minarg2 =y  (if 21 LL ≡ ).

In what follows we will consider a loss function of weighted quadratic type and suppose that the
conditions of Theorem 2.1 are fulfilled.

Theorem 2.2  Let 2:L + +→R R  be the loss function given by ( ) ( )( )2, vxxwvxL −= , where

++ → RR:w  is a measurable function. Then the individual risk premium is

( )
( )( )

( )( )
Θ

Θ

Θ θ
θ

Θ θ
X

X

f
I

f

E Xw X
P

E w X

=
=

=
,

while the Bayesian premium is given by

( )
( ) ( )( )( )

( )( )( )
Θ

Θ

π

π

Θ Θ

Θ
I I

B
I

E P w P
P

E w P

=
=

=
X

X

X y
y

X y
.

Furthermore, an approximation of the Bayesian premium is

( ) ( )1 θL IP P= !y ,

where θ~ is the posterior mode of Θ , assuming that all expectations above exist.
Proof: Apply Theorem 2.1 for the weighted quadratic loss function .
Proposition 2.1 Under the assumptions of Theorems 2.1. and 2.2 and assuming that w  is

differentiable of order 1≥k  at 0, the individual risk premium is



5 Bayesian premium and asymptote approximation for a class of loss functions

( )
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while the Bayesian premium is given by

( )

( )( ) ( )( )
( )( ) ( )( )∑

∑
∞

=

∞

=

+

=

=
=

0
π

0

1
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0

Θ
!
0
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,

which could be approximated by

( )

( )( ) ( )
( )( ) ( )∑

∑
∞

=

∞

=

+

=

=
=

0

0

1

1
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assuming that all expections involved exist.
Proof: Apply Theorem 2.2.
We will next analyze what happens if the loss functions involved in calculations of risk premium and

Bayesian premium are both of weighted quadratic type, but they are not identical.
Theorem 2.3 Let ++ → RR 2

21 :, LL  be the loss functions given by ( )( )2vxxwL ii −= , 2,1=i  where

++ → RR:iw  are measurable functions. Suppose that the risk premium is computed from 1L  and the
Bayesian premium is based on loss function 2L . Then the individual risk premium is

( )
( )( )

( )( )θΘ

θΘ
θ

1

1

Θ

Θ

=

=
=

XwE

XXwE
P

X

X

f

f
I ,

the Bayesian premium is given by

( )
( ) ( )( )( )

( )( )( )yX

yX
y

X

X

=

=
=

Θ

ΘΘ

2π

2π

Θ

Θ

I

II
B PwE

PwPE
P ,

and an approximation of the Bayesian premium is

( )
( )( )

( )( ) ( )θ~
θΘ

θΘ

θ~θ
1

11

Θ

Θ
I

f

f
L P

XwE

XXwE
P

X

X =
=

=
=

=

y ,

where θ~ is the posterior mode of Θ , assuming that all expectations above exist.
Proof: Apply Theorem 2.1 and use the fact that ( )( )2vxxwL ii −= , for 2,1=i .
Remark 2.5 If the loss function 2L involved in the calculation of the Bayesian premium is of weighted

quadratic type and different from the loss function 1L  involved in evaluating the risk premium, the
approximation of Bayesian premium does not depend on 2L .

The weighted quadratic loss function involved in the calculation of Bayesian premium is not the only
loss function that leads to an approximation of Bayesian premium that depends only on the loss function
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involved in evaluating the risk premium. In the next theorem we consider an exponentially scaled loss
function.

Theorem 2.4 Let ++ → RR 2:L be the exponentially scaled loss function given by ( ) ( )2αα, vx eevxL −= ,
where 0α > . Suppose that all conditions of Theorem 2.1 are fulfilled. Then the individual risk premium is

( ) ( )θΘln
α
1θ α

Θ
== X

fI eEP
X

,

while the Bayesian premium is given by

( ) ( )( )yXy
X

== Θα
πΘ

ln
α
1 IP

B eEP .

Furthermore, an approximation of the Bayesian premium is

( ) ( )θ~1
IL PP =y ,

where θ~ is the posterior mode of Θ , assuming that all expectations above exist.
Proof: Apply Theorem 2.1. for ( ) ( )2αα, vx eevxL −= .
The next propositions analyze the cases when the loss functions involved in evaluating risk premium

and Bayesian premium are different and at least one of them is exponentially scaled.
Proposition 2.2 Let ++ → RR 2:iL , 2,1=i , be loss functions given by ( ) ( )( )2

11 , vxxwvxL −= ,

( ) ( )2αα
2 , vx eevxL −= , where ++ → RR:1w  is a measurable function and 0α > . Suppose that the risk

premium is computed from 1L  and the Bayesian premium is based on loss function 2L . Then the individual
risk premium is

( )
( )( )

( )( )θΘ

θΘ
θ

1

1

Θ

Θ

=

=
=

XwE

XXwE
P

X

X

f

f
I ,

the Bayesian premium is given by

( ) ( )( )yXy
X

== Θα
πΘ

ln
α
1 IP

B eEP ,

and an approximation of the Bayesian premium is

( ) ( )θ~1
IL PP =y ,

where θ~ is the posterior mode of Θ , assuming that all expectations above exist.
Proof: Apply Theorem 2.1 for the two loss functions mentioned above. 
Proposition 2.3 Let ++ → RR 2:iL , 2,1=i , be loss functions given by  ( ) ( )2αα

1 , vx eevxL −= ,
( ) ( )( )2

22 , vxxwvxL −=  where ++ → RR:2w  is a measurable function and 0α > . Suppose that the risk
premium is computed from 1L  and the Bayesian premium is based on loss function 2L . Then the individual
risk premium is

( ) ( )θΘln
α
1θ α

Θ
== X

fI eEP
X

,

the Bayesian premium is given by

( )
( ) ( )( )( )

( )( )( )yX

yX
y

X

X

=

=
=

Θ

ΘΘ

2π

2π

Θ

Θ

I

II
B PwE

PwPE
P
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and an approximation of the Bayesian premium is

( ) ( )θ~1
IL PP =y ,

where θ~  is the posterior mode of Θ , assuming that all expectations above exist.
Proof: Apply Theorem 2.1 for the two loss functions mentioned above. 
Proposition 2.4 Let ++ → RR 2:iL , 2,1=i  be loss functions given by  ( ) ( )2αα

1 , vx eevxL −= ,

( ) ( )2ββ
2 , vx eevxL −=  where 0β,α > . Suppose that the risk premium is computed from 1L  and the Bayesian

premium is based on loss function 2L . Then the individual risk premium is

( ) ( )θΘln
α
1θ α

Θ
== X

fI eEP
X

,

the Bayesian premium is given by

( ) ( )( )yXy
X

== Θβ
πΘ

ln
β
1 IP

B eEP

and an approximation of the Bayesian premium is

( ) ( )θ~1
IL PP =y ,

where θ~  is the posterior mode of Θ , assuming that all expectations above exist.
Proof: Apply Theorem 2.1 for the two loss functions mentioned above. 
Remark 2.6  In all the cases presented in Propositions 2.2 through 2.4 the approximation of the

Bayesian premium does not depend on the loss function involved in the calculation of Bayesian premium.
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