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In order to put the characteristic polynomial of a density matrix in a new form we use a result of A. J.
Mountain. The coefficients of the characteristic polynomial in this form are functions of a new class
of invariants introduced by K. Lendi. These invariants are expressed using the symmetric and scalar
product for the Bloch vector associated with the density matrix.  The conversion relations from the
Bloch vectors to the Fano parameters allow us the calculation of Lendi’s invariants as functions of the
Fano parameters. We obtain also the beautiful result of Horodeckis [16] about the factorization of the
characteristic equation of a two-qubits density matrix.

I. INTRODUCTION

The characteristic polynomial )(λP of a density matrix ρ acting on a d-dimensional Hilbert space dH is
given by:

)det()( ρλλ −= EP (1.1)

In the equation (1.1) we have denoted by E  the identity operator on dH . The roots of the characteristic
equation:
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are the eigenvalues of the density matrix ρ  and are invariant with  respect to the unitary group action
)(dSU  on the density matrices given by •UUρ  for any )(dSUU ∈ . It follows that the coefficients of the

characteristic polynomial are also invariant with respect to this action.  Another set of invariants is associated
with the density matrix ρ  using the unitary invariance of the trace:
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The coefficients of the characteristic polynomial are algebraic functions of these invariants. These invariants
can be computed in a an easy way. In the paper [9], S. Weigert developed a non-commutative calculus for
the density matrices expressed in the Bloch parametrization which. This allows us to calculate the invariants

mK and other traces of the similar powers. In the following we shall consider the Bloch vector
parametrization   [1-15] and the Fano parametrization [2-5] and the relations between them [15].
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2. THE BLOCH PARAMETRIZATIONS

Let H be a finite-dimensional Hilbert space with dimension equal to d . We denote by )(HEnd  the
vector space of the linear operators on H  and define on this space the Hilbert-Schmidt inner product by the
formula: )(),( BATrBA ∗=  for any )(, HEndBA ∈  (the operator ∗A is the adjoint of the operator A ). The
Lie algebra )(dsu of all selfadjoint operators )(HEndA ∈ with 0=TrA is a real subspace of )(HEnd ,
with dimension equal to 12 −= dD . We shall take a basis D

jj 1}{ =τ of this subspace such that the following

relations are valid jkkj δττ 2),( = . Any density matrix ρ  i.e. any linear self-adjoint and positive definite
operator with 1=ρTr can be decomposed in the following form:
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with some constraints on the real vector D
D Rvvvv ∈= ),...,,( 21 , called the generalized Bloch vector [1-15].

For any density matrix ρ  we have a unique Bloch vector with the following components:
),( jjj Trv τρρτ == . The fact that the density matrix ρ  is positive definite imposes severe restrictions on

the Bloch vectors [7, 11]. We denote by ∑
=
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, the scalar product in DR .The Lie brackets of the

generators D
jj 1}{ =τ of the Lie algebra )(dsu are given by the structure constants D
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These structure constants are the components of an anti-symmetric tensor and fulfill the Jacoby identity:
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A remarkable fact, specific to the Lie algebra )(dsu , is the existence of a symmetric bracket:
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Here jkld  are the components of a symmetric tensor. With the aid of anti-symmetric and symmetric tensors

we define an anti-symmetric and a symmetric product on the Euclidean space DR . The anti-symmetric
product is given by:
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The symmetric product is given by:
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Then we have:
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It is evident from the definition of the symmetric and scalar products that they are invariants to the unitary
group action on the density matrices. This justifies the definition of K. Lendi invariants [6]:
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In the definition of, kL  we have 1−k  factors in the multiple symmetric product.
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We shall use the following formula from A. J. Mountain [10]:
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We remark that for the traceless density operator ><=−= τρ ,
2
11 vE

d
F and with notations 

d
1−= λξ

and  1−−= ξα  we have:

)det()()det( FEE d αξρλ +=− (3.2)

Because we have:
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Then we obtain the following form for the characteristic equation:
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Two interesting cases with 8≤d  are the followings:

a) 224 ×==d , corresponding to a system composed from two spins 
2
1

 when the characteristic equation is

given by:
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 b) 326 ×==d , corresponding to a system composed from a spin 
2
1

 system and a spin 1 system with the

characteristic equation given by:
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4. THE FANO PARAMETRIZATION

The density matrix, which corresponds to a state of a bipartite quantum system, composed from two
subsystems of dimensions 1d  and  2d , can be parametrized by the Fano parameters [2]:

2 2
1 2d 1 d 1

1 2 2 1
1 11 2 2 1

1 1 1 1( ) , , ( )
d d 2d 2d 4 kl k l

k l
I I x I I y K

− −

= =
ρ = ⊗ + < τ > ⊗ + ⊗ < τ > + τ ⊗ τ∑ ∑  (4.1)

In the particular case when 221 == dd we have [15]:
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The converse relations are in an easy way obtained from these relations [15].

5. THE CALCULATION OF THE SYMMETRIC PRODUCT WITH FANO PARAMETERS

In order to obtain the Lendi invariants in the Fano parametrization we must have the values of the symmetric
product as functions of the Bloch vector components [15]:
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The remarkable fact discovered by Kummer in [13] and [14] is the very simple and tractable form of these
equations when they are written for the Fano parameters.
We shall find these equations directly from the equations for the Bloch vector using the relations between the
Bloch and Fano parametrizations given above. We shall define the Fano parameters (denoted by the same
symbols with a hat) associated with the vector "vv  as functions of the Fano parameters of the Bloch vector
v . Or in a more short way
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Here KKadjK det1−=  and TK  denote the transpose of the matrix K . For the scalar product of a two
Bloch vectors we have:
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Ten we obtain:
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6. THE CHARACTERISTIC EQUATION OF A SYSTEM COMPOSED FROM TWO SPIN 
2
1

As we have seen in the section 3, in the case of a system composed from two spins 
2
1

 the characteristic

equation is given by:
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This equation is exactly the incomplete form of the initial characteristic equation. The Decartes-Euler
solution of the incomplete equation are given by
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where 321 ,, εεε   are the roots of the cubic resolvent equation:
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It is evident that we have real roots. In the particular case when 0== yx  we have:
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Let us consider another case in which the solutions of the equation (6.5) can be obtained directly.  This is the
case of pseudo-pure states treated in [15]. In this case we can have 0,0 ≠≠ yx  but for the Bloch vector we
have the restriction " vvv µ=  which for the corresponding Fano parameters becomes:

KadjKxyyxKxKy TTT µµµ =−== )(,, . In this case we have ><−= xxKKTr T ,23)( 2µ ,
224 ,,43))()(( ><+><−= xxxxadjKadjKTr T µµ , and ),()det( 2 ><−= xxK µµ  i.e. the equation
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i.e. the equation (6.5) factorizes in the following way:
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