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In this paper are studied the possibilities of replacing the analytical calculation, that intervene in the
mechanical modelling, by an isomorphic numerical calculation which can be performed on digital
computers. Is described an algorithm for performing the greatest common divisor of two polynomials
with several variables that may be used to determine the analytical inverse matrix for a matrix of such
polynomials that are used in a mathematical modelling of mechanical phenomena. The model of
calculus for revolution  shells is deduced by coding, from the Goldenveizer thin plates model. We
appeal the codified summation and multiplication operations for the set of polynomial of several
variables with real coefficients and the codified differentiation for the vectors attached to any middle
surface point of the  shell.
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1. CODING THE OPERATIONS IN THE SET OF POLYNOMIALS WITH SEVERAL
VARIABLES

For coding the summing and the product operations in the set of polynomial of several variables with
real or integer coefficients we start with the coding of the algebraic operations for two monomials as follows:
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The inverse matrix of the matrix  ,  ,  1,...,   ijp i j n  =  (where n  is non zero and non negative integer

and ijp  is polynomial with several variables) is denoted by / ,  ,  1,  ..., ,  ij iq q i j n  =  and is deduced by
reduce the fractions of polynomials that intervene in the algorithm. It is necessary to know the algorithm for
performing the greatest common divisor of two polynomials with several variables as follows and to codify
this algorithm.

2. INTRODUCTIONAL NOTIONS FOR THE SET OF POLYNOMIALS

A unitary and commutative ring K without divisors of zero is named an integral domain. We write
briefly K i.d.

Let K a factorial ring, therefore an integral domain with the property that every non zero and non
invertible element of K is a product of prime elements of K . We write K f.r.
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If ,a b K∈  we say that a divide b if    b a c= ⋅ with c K∈  and will write /a b .
A non zero and non invertible element p K∈  is named “prime” if for any ,a b K∈  with /  p ab it

follows /  p a or /p b .
An element c K∈  (if exist) is named a greatest common divisor of a and  b if / ,  /  c a c b and if /d a ,

/  d b then /d c . Is denoted ( , ).c a b=
If 1 ( , ),  2 ( , ) d a b d a b= = then exists u K∈ , invertible such that 1 2 d ud= .
Two elements 1,  2 d d K∈  such that exists u K∈  invertible, with 1   2 d u d= are named adjoints in

divisibility.
The elements ,   a b K∈ such that ( ,  ) 1 a b = are named relatively prime.
The ring of polynomials of one variable with coefficients in K is denoted by [ ] K X and the ring of

polynomials of several variable 1,...,   nX X with coefficients in K is denoted by 1[ ,...,  ].nK X X
If K i.d. and  [ ] f K X∈ of the form

1      ...   n
o nf a a X a X= + + + (2.1)

is denoted by ( )  c f K∈ the greatest common divisor (g.c.d.) for the coefficients ia K∈ , ( 1,..., ) i n= of
polynomial f .

If [ ] f K X∈ is of the form (2.1) and  a K∈ with /  a f then /  ,  1,...,   ia a i n= where ia K∈ .
If [ ] g K X∈ and ( ) 1 c g = we say that g is primal polynomial.
Is denoted by 0 [ ]mK X  the ring of polynomials in indeterminate mX  over ring

0 1 -1 1  [ ,..., ,  ,..., ]m m nK K X X X X+= , .m n≤
A polynomial 0 ( )mg K X∈ is of the form

0 1      ...      n
m n mg b b X b X= + + + (2.2)

where 0 1,  ,...,  nb b b are polynomials from the ring 1 -1 1[ ,..., ,  ,..., ]m m nK X X X X+

If K i.d. then [ ] K X i.d. and if K f.r. then [ ] K X f.r.
If K f.r.; ,  ,  [ ] f g h K X∈ and ,   f g relatively prime such that /  f gh then / .f h
We will use the following property [1]:
Theorem 1
Let ( ) f X and ( ) 0 g X ≠ be polynomials in [ ],   R X R a ring, and let p  be degree and pb  the leading

coefficient of ( ). g X Then there exists   k N∈ and polynomials ( ) q X and ( ) [ ] r X R X∈ with deg ( )  r X <
deg  ( ) g X such that

      k
pb f q g r= + (2.3)

where max(0,deg  deg  1)k f g= − +

3. A DIVISION WITH A REMAINDER THEOREM FOR 1[ ,...,  ]nK X X

Let K factorial ring and 0 m n< ≤ , with ,  m n N∈
We formulate bellow the following:
Theorem 2
If a polynomials 1 2 1 1 2,  [ ,...,  ],  0,  0,  np p K X X p p∈ ≠ ≠ for fixed m , exists a polynomials

1 2 1,  ,  [ ,...,  ],nq q r K X X∈ unique without a adjointly in divisibility, such that

1 1 2 2      p q p q r= + (3.1)
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where  0r =  or  2deg  deg   r p< , with degree referred to variable mX .
The polynomials 1 2,  ,  q q r  are relatively prime and  1 0q ≠ .
Proof.  In the following all polynomials are considered as polynomials in the variable mX . If

1deg  deg  p <  2p  the relation (3.1) is determined by considering 1 2 11,  0,  q q r p= = = .
For 1 2deg  deg   p p≥ we use the relation (2.3) of the theorem 1, where [ ] R X is the ring 0[ ]mK X of

polynomials with variable mX with coefficients from 0K .

*
1 2 k

pb p q p r= + (3.2)

where pb  is a leading coefficient of 2p , therefore is a polynomial from the ring 0K , otherwise the ring

1 -1 1[ ,..., , ,..., ],m m nK X X X X+ and where  1 2max(0,  deg  deg  1)k p p= − +
Let d  the greatest common divisor of polynomials   and  k

pb q  as the polynomials of the ring

1[ ,...,  ].nK X X  Because k
pb  is a polynomial no more than 1 n − variables then d  is a polynomial no more

than 1 n − variables. Polynomial d  is also divisor of  polynomial *r  because
*

1 2   k
pb p q p r− = (3.3)

We simplify the relation (3.2) with polynomial d   and it follows:

1 1 2 2      q p q p r= + (3.4)

where are denoted by 1 2,  q q  and r  the polynomials ,  k
pb q respectively *r  divided by d .

The polynomials 1 2,  ,  q q r  are relatively prime from your deduction and  1 0q ≠  because 2 0p ≠ .
We study the uniqueness of the relationship (3.1). Suppose the existence of the second division

relationship of the polynomials 1p and 2p  such that

1 1 2 2      p q p q r′ ′ ′= + (3.5)

where the polynomials 1 2,  ,  q q r′ ′ ′  are relatively prime and  1 0q′ ≠ .
From (3.1) and (3.5) it follows that

2 1 2 1 2 1 1(   )   p q q q q r q rq′ ′ ′ ′− = − (3.6)

If  1 2 1 2  0q q q q′ ′− ≠  then 1 1 2deg(  -  ) deg  r q rq p′ ′ ≥ as polynomials in .  mX
But  2deg    deg   r p< and  2deg  deg   r p′ < then 1 1 2deg(  -  )  deg  r q rq p′ ′ < .
Contradiction. It follows 1 2 1 2 0q q q q′ ′− =  and 1 1 0r q rq′ ′− = .
Because 1 1 2/q q q′  and 1 2,   q q are relatively prime it follows that 1 1/q q′ . Analogue, from  1 1 r q rq′ ′=  and

1 1/q r q′ ′  with 1,  q r′ ′  relatively prime, we deduce that 1 1/q q′  such that 1q and 1q′  are adjointly in divisibility.
From 1 1 r q rq′ ′=  and 1 1,     q q′ adjointly in divisibility, it follows that  ,  r r ′  are adjointly in divisibility.

4. THE EUCLID’S TYPE ALGORITHM IN THE FACTORIAL RING 1[ ,..., ]nK X X

We suppose that K is factorial ring and 0 m n< ≤ , with ,  m n N∈
Let 1 2 1 1 2,  ( ,..., ),  0,  0. np p K X X p p∈ ≠ ≠ From the second theorem, for fixed m exists a polynomials

1 2 1,  ,  [ ,...,  ],nq q r K X X∈ unique without a adjointly in divisibility, such that

1 1 2 2      p q p q r= + (4.1)
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where 0r =  or  2 deg    deg  r p< , with degree referred to variable m.
The polynomials 1 2,  ,  q q r  are relatively prime and  1 0q ≠ .
By 1 2( ,  ) D p p is denoted the set of  divisors with zero remainder for both polynomials 1p and 2p . Is

named briefly the set of divisors for 1p and 2p .
There is the following property:
Theorem 3
In the conditions of second theorem, is true the equality 1 2 2( ,  ) ( ,  ),  D p p D p r= where r  is the

remainder of the division of the polynomials 1p and 2p , for fixed m .

Proof. We suppose, for beginning, that 1p and 2p  are primal polynomials. It is sufficiently to provide
the property for the set of prime divisors.

Let 1 2( , )d D p p∈ , d  prime polynomial and 1 2/ ,  /d p d p . But 1 1 2 2      r p q p q= − . Then /  d r and
thus 2( ,  )d D p r∈ , such that 1 2 2( ,  ) ( ,  )D p p D p r⊆ .

Inversely, let d  prime polynomial, 2( ,  )d D p r∈ . Then 2/  d p and /d r . Thus 1 1/  d p q because

1 1 2 2      p q p q r= + . But d  prime polynomial, therefore 1/  d p or 1/d q . Because 2/  d p and 2p  primal
polynomial it follows d  primal polynomial. If 1/  d q than d  is polynomial independent of mX and because

2 /d p it follows d  divide the coefficients of 2p . Contradiction, because 2p  is primal polynomial.
Then 1/d p , such that 1 2( , )d D p p∈ . Thus 1 2 2( ,  ) ( ,  )D p p D p r⊇

We denote by 1 2( , )D p p′  the set of polynomials common divisors of coefficients for 1  p and 2p .
If 1 2,   p p are not primal polynomials and d , prime polynomial, divide the coefficients of polynomials

1p  and 2p  then d  divide the polynomial r  and thus the coefficients of polynomial r , such that

1 2 2( ,  ) ( ,  )D p p D p r′ ′⊆ . If d  divide the coefficients of polynomials 2p and r  then d  divide 1 1p q . If

1/  d q then 1q and r  are not relative prime. It follows 1/d p , such that d  divide the coefficients of 1p , thus.

1 2 2( ,  ) ( ,  )D p p D p r′ ′⊇
This theorem permits to give an Euclid’s type algorithm for performing the greatest common divisor of

two polynomials of several variables with coefficients in factorial ring.
We suppose that 1 2deg  deg  p p≥ . From the third theorem applied to polynomials 1p and 2p we obtain

that 1 2 2( ,  )  ( ,  )D p p D p r= , where r  is the remainder of division of 1p and 2p . If 0 r = then 1 2 2( ,  )  p p p= .
If 0r ≠  then 2deg    deg  .r p<

Apply the third theorem polynomials 2p  and  r . We can write:

2 1 2 1      p q r q r′ ′= + (4.2)

If  1 0 r = then 1 2 2( ,  )  ( ,  )  p p p r r= = . If 1 0r ≠ then:

1 2 1deg    deg    deg    deg  ...p p r r≥ > > > (4.3)

and 1 2 2 1( ,  )  ( ,  )  ( ,  ) ...p p p r r r= = = such that after a finite number of steps is obtained a zero remainder.
The latest none zero divisor in the row (4.3) is the greatest common divisor of polynomials 1p and 2.p

In the next place we describe the expression of  an inverse matrix of a matrix of polynomials with
several variables that intervene in the mechanical modelling of  the plane shapes.

The inverse matrix of the matrix  ijp   , ,  1,...,8i j = , is denoted by /ij iq q   , ,  1,  ...,8i j = , and is
deduced by reduce the fractions of polynomials. The expression of the elements is:

14 16 25 26 37 48 51 53 54

55 56 62 63 64 66 73 74
2 2

75 76 77 83 84

,   ,  ,  ,  2 ,  2 ,  1,  ,  ,  
  ,    (1 ),   1,  ,  ,  (1 ),  ,  ,  

 ,  (1 ),   ,  ,   ,

p b p a p a p b p ab p ab p p b p a
p p a p b p p p a p bp p a p p b p a
p a p p b p p a b p a p b p

= − = = = − = = − = = − = −
= = + = = − = − = − + = = −
= = − + = + = − = 85 86 ,  (1 ),  p b p a p= − = − +

(2.1)
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2 2
88 ( )p a b= − + .

In the rest, the values of ijp are zero.

       2 2 2 2 2 3 3 2
11 124 (1 )(2 ),  4 (1 ) ,q a b p a b b p q a b p= − + + − = − +

        2 2 4 2 2 4 2 2 2 2 2 2
13 14( )( 2 2 ),  2 ( )( ),  q a b a a b b a b p q ab a b a b p= + − − − = + −

        2 2 2 4 2 2 4 2 2 2 2 2 2
15 17 182 ( ) ,  2 ( 2 2 ),  4 ( ),q ab a b q ab a a b b a b p q a b a b p= + = − − − − = − −

        3 3 2 2 2 2 2 2 2 2 2 2
21 22 234 (1 ) ,  4 (1 )(2 ),  2 ( )( ),q a b p q a b p b a a p q ab a b b a p= − + = − + + − = + − +

        2 2 2 2 2 2 2 2 2 2 2 2
24 26 27( )(2 ),  2 ( ) ,  4 ( ),q a b b a a p q ab a b q a b a p b= + + − = + = − −

        
4 2 2 4 2 2 2 2

28 31 322 ( 2 2 ),  2 (1 ),  2 (1 )q ab a a b b a b p q a b p q ab p= − + − + = + = +

        2 2 2 2 2 2 2 2 2 2
33 34 37 38 41( ),  ( ),  2 , 2 ,  2 (2 ),  q b a b q a a b q ab q a b q b a b a p= + = − + = − = = − + +

        2 2 2 2 2 2 2 3
42 43 44 472 ( ),  ( ),  ( ),  2q ab b a p q a a b q ab a b q a b= − − = + = + = −

        2 2 2 2 2 2 2 2 2 2
48 51 52 532 ,  2 ( ),  2 ( 2 ),  ( ),q a b q ab a b p q a a b b p q ab a b= − = − − = − + + = − +

        2 2 2 2 2 3 2 2 2 2
54 57 58 61 62( ),  2 ,  2 ,  2 ( ),  2 ( ),q b a b q a b q ab q a a b p q b b a p= − + = = = − − = −

        2 2 2 2 2 2
63 64 67 68 73 84( ),  ( ),  2 ,  2 ,  1,  1.q a a b q b a b q a b q ab q q= − + = − + = = = =

In the rest the values of ijq   are zero.

2 2 2 2 2 2 2 2 2 2 2
1 2 3 42 ( ) ,  2 ( ) ,  2 ( ),  2 ( ) ,q ab a b q ab a b q ab a b q b a b= + = + = − + = +

2 2 2 2 2 2
5 6 7 82 ( ) ,  2( ) ,  2 ,  2 .q a a b q a b q ab q ab= − + = − + = = −

5. THE MODEL OF CALCULUS FOR THIN PLATES AND CODING

The thin plate is supposed homogeneous, isotropic and elastic linear. The thickness “ h ” of the plate is
constant and satisfy the relation

2 / 1/ 20mh R < (5.1)

where mR   is the minimum of curvature radius of the plate points.
Is considered also the hypothesis Love-Kirchoff of  the “indeformed normal element”.
The revolution thin plate is described by the vector of position  for the point situated on the middle

surface:

  ( ,   )  ( ) cos( )      ( )sin  ( )      R z r z i r z j z kθ = θ + θ +
! "! !

(5.2)

The vector of displacements with his applied point on the surface is considered of the form:

           -    zU u t v t wnθ= +
! ! ! ! (5.3)

which  zt
!

 ,  tθ
!

 are the unitary vectors attached to coordinate curves concerning point ( ,  )P zθ (fig.1).

The first fundamental form of the middle surface is : 22 2 2 2  ( )    (1  ) zds r z d r dzθ= + +
with the coefficients 2 1/ 2 ( ),    (1   )zA r z B r= = +
The coefficients of the second fundamental form are: 2- ( ) / ,   0,   / ,zD r z B D D r B′ ′′= = =  where

2 2 2 ( ) /  zr d r z dz=
The building of the thin plate model on computer is based on coding of the differentiation operation.
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For deduction of the c
firstly are deduced t

example:

where   /  zr r z= ∂ ∂ .
The vector equilibriu

the plate and to appropriate

( ) (  )   
 

zr C
z

∂−
∂

!

with  P
!

- the external force
(  F
!

( )  F Nθ θ= −
!

By minimizing the en
expression of the generaliz
const. :

*  ,z zN N=

From the hypothesis o

2

2  ( 
1

EhN θ =
− ν

3

2

2  (  
3 (1 )

zEhM θ = − χ +
− ν

,

                        fig. 1

        
     Fig.1

odified differentiation of the vector U
!

.
he codified formulas of differentiation for the unitary vectors  ,   ,   .zt t nθ

! ! !  For

2 2  /  /    1./    z zt r B t B nθ∂ ∂ θ = − −
! ! ! (5.4)

m equations of the Goldenveizer model, attached to any middle surface point of
 three dimensional local system of axis, are:

( ) ( ) (  )  (  )         0.
  

zr F B F r B P
z

θ∂ ∂− − + =
∂ ∂ θ

! ! !
(5.5)

( )
  (  )                      0

 
z

z
B C r B F X t r B F X t rB C

θ
θ

θ
∂− − − + =

∂ θ

! !! !! ! (5.6)

 which action on the plate,  C
!

- the external resultant moment and
) =    ,       z z z z z z z

z zN t N t Q n C M t M tθ θ
θ θ− + = −

!! ! ! !!

     z
zt N t Q nθ θ

θ− +
! ! !  ,     z

zC M t M tθ θ θ
θ= − −

! ! !
   (see fig. 2)

ergy of the forces and of the moments which action on the plate we deduce the
ed forces which are utilized to impose the boundary conditions at the end  z =

* * *1 1     ,   ,   
  

z
z z z z z z zMN N M Q Q M M

r B r

θ
θ θ θ ∂= + = + =

∂ θ
(5.7)

f linearity are deduced the constitutive equations :

    
2

2  ),   (   ),   
1 1

z z z z zEh EhN N Nθ θ θ θε + ν ε = ε + ν ε = − = ω
− ν + ν

3 3

2 2

2 2  ),   (    ),    
3 (1 ) 3 ( 1 -   )

z z z zEh EhM M Mθ θ θ θν χ = − χ + ν χ = − = τ
− ν ν



7 About analytical calculation in mechanical modelling

                    
Fig. 2

The coding of the operations for the deduction of the model of the revolution thin plates, in
displacements, is performed about the following successive variable which intervene in the model :

52

1 1 1 1,  ,  ,  ,  ,  ,   ,..., ,  ,  ,  ,  ,  ,  ,  ,  ,  ,..., ,  ,  ,...,  ,  ,  ...,  
1 1 z z z z zz zzz zzzz zzzz zzzzE h r r r B u u u u u u u u u v v w w

r B θ θθ θ θθθ θ+ ν − ν

 where E  is modulus of elasticity, h  is the shell half-thickness, ν  is Poisson’s coefficient and ,  ,   u v w are
the components of the displacement of a point of the middle surface of shell.

Vector and scalar addition, multiplication and differentiation subroutines have been performed.
We describe some of the results deduced on the computer :

2 -2 -2 2 -1 -4 2 -1 -4
2 2

2 -2 -2 2 -1 -2 2 -1 -4 2 -2 -2
2

2 -1 -2

   1.33 2   0.66 2   0.66 2  
 0.66 2   1.33 1  0.66 1   1    
 0.66 2    0

z
z z z z z

z z z z z

z

A Q E h r r B u E h r r r B u E h r r r B u
E h r r B u E h r r B u E h r r r B u E h r r B u
E h r B u

θ θ θ

θ θ θ θ

θ

= + − −
− − − + −
− + 2 -1 -2 2 -5 2 -7

 4 2 3
2 3 22 3 -7 2 -9 2 -1 -5 2 2 -5

2

2 -5 2 2 2
3

.33 1 0.66 2    0.66 2   

 2 2   2   12. 2    0.66 2 2   0.66 2 2

 0.66 2  2.66 2 2

z z z z z

z z z

z z

E h r B u E h r r B v E h r r r r B v

E h r rz B v E h r r r B v E h r r rz B v E h rz B v

E h r r B v E h rz rz

θ + − −

− + − + +

+ − 2 2-7 2 -1 -5 2 -2 -3
2

2 22 -1 -5 2 -5 2 -5 2 -1 -7
2 2 3 2 3

2 22 -7 2 -1 -5
2 3

  0.66 2   0.66 2  

 0.66 1   0.66 1  0.66 1   0.66 1  

 2.66 1  0.66 1  

z z z

z z z z z z z z

z z z

B v E h r r r B v E h r r B v

E h r r r B v E h r B v E h r r B v E h r r r r B v

E h r r B v E h r r B v

− − +

+ − − + +

+ + 2 22 2 -7 2 -1 -5
2 2

22 -2 -1 2 -1 -3 2 -5 2 -7 
2 2 2

2 -5 2 -5 2 
3  2

 2 1  0.66 1 

 0.33 1   0.66 1  0.66 2  2 2   
0.66 2   0.66 2  0.66 1 

z z z

z z z z z z z

z z z z z z

E h rz r B v E h r r r B v

E h r B v E h r r B v E h r r B v E h r r r B v
E h r r B v E h r r B v E h r r

θθ θθ

− − +

+ + + − +
+ + − -5 2 -5

2 2
22 -3 2 -5 2 -7 2 -7

3 2 2 3
22 -9 2 -1 -5 2 -2 -3 2 -1

2 2

 0.66 1  -  

 0.66 2  0.66 2   2. 2   1.33 2   

 4 2   0.66 2   0.66 2  1.33 2 

z z z z z

z z z z z z

z z z z z

B v E h r r B v

E h B v E h r B w E h r r B w E h r r r B w

E h r r r B w E h r r r B w E h r r B w E h r
θ

+

− − + − +

+ + + + -1

22 -2 -1 2 -2 -1 2 -5 2 -7
 2 2

2 22 -5 2 -5 2 -1 -3 2 -3
3 2 2

 1.33 1  1.33 1  0.66 2   2. 2    

0.66 2    2 2    0.66 2  0.66 2  

 1.33 2 

z

z z z z z z

z z z z z z z z z

r B w

E h r r B w E h r r B w E h r B w E h r r B w

E h r r r B w E h r r B w E h r r B w E h r B w

E h

θθ

θθ θθ

−

− + − + +

+ − + − +

+ 2 2 22 -5 2 -1 -3 2 -3 2 -5
2 2 2

2 22 -5 2 -1 -3 2 -1 -1 2 -5
2 2

2 -3

 0.66 2   0.66 1 1.33 1  

0.66 1  0.66 1  0.66 2   2 2   
 0.66 2  0.66 

z z z z z z z z z z

z z z z z z z z zz

z zz

r r B w E h r r B w E h r B w E h r r B w

E h r r B w E h r r B w E h r B w E h r r r B w
E h r B w E

θθ

− + − +

+ + − + −
− + 2 -3 2 -31  0.66 2  .z zz zzzh r B w E h r B w−

The boundaries conditions for the generalized displacements and forces are applied to:
* * * *,  ,  ,   ,   ,  ,  ,   z z z zu v w N N Q Mθ θγ  where: -3 -1   -  ,zz zr B v B wθγ =
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3* -1 -1 2 -7 2 -9
2 3 2

2-1 -1 -1 -1 2 -1 -5 2 -1 -7
3 2

3-1 2 -9 -1 -1
2

   2 1   2 2   0.66 2   2 2  

2 1   2 2  0.66 2  2 2  

 2 2   0.66 2  2 2 

z
z z z z

z z z z z

z z

N E r u E r u E h r r B v E h r r B v

E r r B v E r r B v E h r r B v E h r r r B v

E B v E h r B w E r B

θ θ= − + − + −

− + − + +

+ + − 2-3 2 -1 -7
2 2

22 -1 -5 2 -7 2 -1 -3
2 2

2 -5
2

2 -2 -1 2 -2 -1 2 -1

 2 2    0.66 2   

 0.66 2  0.66 2   0.66 2  
 0.66 2 .

  0.66 1   0.66 2   0.66 2  

z z

z z z z z z zz

z zz
z

z

w E r B w E h r r B w

E h r r r B w E h r r B w E h r B w
E h r B w

M E h r B u E h r B u E h r rθ θ

+ + −

− − + +
+

= − + -4 2 -1 -4
2 2

22 -4 2 -6 2 -1 -2 2 -1 -4
3 2 2

22 -6 2 -2 2 -2 2 -4
2 2

  0.66 1   

 0.66 2   2 2   0.66 2   0.66 2  

 0.66 2  0.66 1   0.66 2  0.66 2 
 0.

z z z

z z z z z

z z z z

r B v E h r r r B v

E h r B v E h r r B v E h r B v E h r r B w

E h r B w E h r w E h r w E h r r B wθθ

− +

+ − − − −

− + − + +
+ 2 -1 -2 2 -1 -2 2 -266 1  0.66 2  0.66 2 . z z z z zzE h r r B w E h r r B w E h B w− −

The codified scalar equilibrium equations in displacements deduced on the computer are used as input
data for the program of static or dynamic calculus of the thin plates.

The numerical method take into account the boundary conditions at the extremities 1  z z= and 2  z z=
as well as the development in series of vector displacement components concerning coordinate variables
which are considered of the form:

1 2 3

0 0 0

( ) sin( ),  ( ) cos( ),  ( ) cos( )
n n n

ns nc nc
n n n

u u z n v v z n w w z n
= = =

= θ = θ = θ∑ ∑ ∑
and where ( ),  ( ),  ( )  ns nc ncu z v z w z are developed in series by a complete system of polynomials of single
variable. The semi-analytical method used take into account a decomposition of the revolution surface in
modules concerning direction of revolution axis.

6. CONCLUSIONS
The possibilities of replacing the manual analytical calculation that intervene in the mechanical

modelling by an isomorphic numerical calculation, which can be performed on digital computers are
investigated.. A division with a remainder theorem in the set of polynomials of several variables with
coefficients in factorial ring ( as the integers ring ), proof here, permit us to perform on the computer the
analytical expression of the inverse matrix of polynomials with several variables used in the modelling.
Appear a question about how much can lead the analytical calculation in the modelling up to replacing with a
numerical method of the solutions  calculation. Any steps has analyzed here.
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