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A finite difference Lattice Boltzmann model for the Van der Waals liquid — vapour system is
developed. Density and velocity profiles are derived using two different numerical schemes for the
calculation of the force term in the Boltzmann evolution equation. Scalability of the parallel
computing code on two computer clustersis also investigated.

1.INTRODUCTION

Lattice Boltzmann (LB) modes [1,2,3,4,5]
provide an dternative to current methods in
computational  fluid dynamics (CFD). Unlike
conventional numerical techniques based on the
discretization of the macroscopic fluid equations,
LB models are based on the physics at the
mesoscopic scale, while the macroscopic level
phenomena are recovered from evolution equations
which contain the force F =maacting on a fluid
particle of mass m Due to their local nature, LB
models are suitable for parallel computing.

The starting point of LB models is the set of
evolution equations for the distribution functions

f.(x,t), which is recovered from the Boltzmann
equation after discretisation of the phase space [6]:

Tef (x.t) + e xNf; (x,t) =

] %[fi(x,t) - £59(x,1)]
1 eq w
+ k_TF g - u(x,t)]f,

B

i =01..N

Here {e} isthe discrete set of particle velocities,
while position vectors X belong to a discrete

lattice L. In the one dimensiona (1D) case, N=2,
and:
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where ¢ = Ko T is the thermal speed (k; is the
cm

Boltzmann constant, T is the temperature of the
systemand c =1/3).

The equilibrium distribution functions f.* are

expressed as a series expansion in the loca
velocity u =u(x,t):.

€ exu (e xu)? u ><uL:j
fea(x,t) = wnel + — + — - u (3
: e cc? 2c?c? 2CCZH

g
The weight factors for the 1D case are:
w,=2/3 w,=w, =1/6.

2. MACROSCOPIC EQUATIONS

The non-dimensional momentum conservation
equation [6] of the 1D modd is.

M.(ru) + N uu) = -Np+nN(r Nu) +r a (4

wherefi is the local fluid density and i is the fluid
viscosity. To retrieve a non-ideal equation of state
for the pressure p=p(r,T), the force term
should be:
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m ~

F=ma=-rN(pw-p.d) ®

where the Van der Waals pressure p,, [7] and
respectively the ideal gas pressure p,, are:

_rT 3r2

Pv T30 8 6)
Pig = CC?r

With these relations, taking into account the
expresson for the equilibrium distribution
functions, the force term in the 1D LB equation
becomes (up to second order in u ):

F [e - ulf® =
cc’m @
Wes UL BYE A, - po)
m & cc? czct M 'd

2. FINITE DIFFERENCE SCHEMES

The well-known Euler method and the upwind
finite difference (FD) schemes [8] were used to

compute the terms [, f, and e XNf, in Eq. (2),
while two different FD schemes were considered
for the pressure gradient in Eq. (7). The lattice

spacingdx =L/ N is related to the length of the
system L and the number of lattice nodes N. Using

the notation P(x,t) = p,(X,t)- p,y(X,t), the
CENTERED scheme reads:

fx,t+dt) = f (x1t)
oot
- &[fi (xt) - fi(x- & dx/c1)]-

w dt gei - u(x,t) L& (& xU(th))g
2max é cc2 c?c? ¢
" [P(x + e dx/c,t) - P(x- e dx/c,t)]
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and the MIXED scheme reads:

f(xt+d) = f(x1)

. %{[fi (x,t) - fi(x - gdx/c,t)]

+ W, [P(x,t) - P(x - edx/c,t)]}

mcc?
wdt € u(xt) @ (e u(x. t)u 9
2mdxg cc? c%c* a

. [P(x+eidx/C,t) - P(x- eidx/c,t)]

- %[fi(x, t) - fieq(x,t)]

3. COMPUTER CODE

The computer code uses the parale computing
techniques incorporated in the PETSc 2.1.0 library
developed a Argonne Nationa Laboratory,
Argonne, Illinois [9] and was tested on two parallel
computing clusters. The ACAD cluster has four
450 MHz Intel Pentium I11 processor workstations
running the FreeBSD 3.2 operating system and is
located at the Laboratory for Numerical Simulation
and Parale Computing in Fluid Mechanics,
Center for Fundamental and Advanced Technical
Research, Romanian Academy, Timi%ara. The
BCUM cluster hasten 1 GHz Intel Pentium Il
processor workstations running the Red-Hat Linux
7.2 operating system and is located a the
Laboratory for Parallel Computing of the National
Center for Complex Fluids Systems Engineering, a
research unit recently edablished a the
“Politehnica’ University of Timi®ara [10]. During
the test, 500,000 iterations with time step
dt =10"* were done on a 10,000 nodes |attice, and
the run time was recorded. Figure 1 shows the de
pendence of the total run time vs. number of
processors used on each cluster. Good scalahility is
achieved on both clusters, especidly when the
number of processorsisincreased from 1 to 4.

4. NUMERICAL RESULTS

The main characteristic of the liquid vapour
systems is the phase separation, which occurs
when the system temperature is lowered below the

critical temperatureT, =1. In the find dtate, the
existence of two different phases. liquid phase
(with higher density) and gas phase (with lower
density) is clearly observed in Figure 2. When
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using the CENTERED scheme, a spurious surface
tension (Figure 2a), as well as a spurious velocity
(Figure 3) are observed in the interface region.
This feature is not present when using the MIXED
scheme.

The phase coexistence diagrams recovered for both
CENTERED and MIXED schemes are shown in
Figure 4. One can see that the results we get using
the MIXED scheme are closer to the theoretica
diagram derived from the Maxwell construction
[7]. When using the CENTERED scheme, the local
velocity increases when the temperature decreases
(Figure 5). Veocity profiles are dependent aso on
the lattice spacing dx (Figure §. The unphysica
behaviour of the CENTERED schemes appears
because of a spurious term in the model continuity
equation derived from Eq (8) using the procedure
described in [11]:

U_
H

The spurious term acts in the interface region,
where large density gradients are present. When
using the MIXED scheme, this term is no longer
present.

L6 1 -
1,1 +N§ru - 5 coflr p= 0 (10)
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Figure 1 Run time vs. number of processors on the
ACAD and BCUM clusters.
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Figure 2 Density profiles obtained using the two finite
difference schemes: (a)-CENTERED, (b)-MIXED at T=0.95

fluid velocity u_x

04

03

oz

OO2 -

-0.03

-Cud

i}

02 03 04 DB

FIKED
CENTERED

0E ' DB o8 1
% Coordingte

Figure 3 Velocity profiles obtained using the two finite
difference schemes: MIXED, and CENTERED at T=0.95
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Figure 4 Phase coexistence diagram
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Figure 5 Velocity profiles obtained using the
CENTERED scheme for different temperatures
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Figure 6 Velocity profiles obtained using the CENTERED
scheme for different lattice spacing

5.CONCLUSIONS

In this paper we developed a finite difference
lattice Boltzmann (FDLB) model for the
simulation of isotherma liquid - vapour systems.
Phase separation is achieved trough an interparticle
force. The choice of an appropriate numerical
scheme is essentia to avoid spurious behaviour in
theinterface region.
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