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Biaxial tensile deformation tests were carried out on cruciform specimens of AA3103-0, 1.2 mm thick
sheet samples using a CNC stretch-drawing facility designed and built at the Institute for Metal
Forming Technology, Stuttgart University. The beginning of plastic yield was monitored by
temperature measurements according to the method of Sallat. The observed plastic anisotropy was
modeled using the phenomenological descriptions developed by Banabic et al. (BBC200) [1], Barlat
et al. (Barlat2000-2d) [2] and by Cazacu and Barlat [3]. In Banabic et al [1] and Barlat et al. [2] the
anisotropy is introduced by a means of a linear transformation of the Cauchy stress tensor applied to
the material whereas Cazacu and Barlat’s [3] approach is based on representation theorems of tensor
functions. Comparison with data show that the criteria can successfully describe the anisotropy of
both the plastic strain ratio and yield of AA3103-0 aluminum thin sheets.
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1. INTRODUCTION

For computer simulation of sheet metal forming
processes, a quantitative description of plastic
anisotropy by the yield locus of the material is
required. The generalization of von Mises's yield
criterion to orthotropy was proposed by Hill [4].
Examples of non-quadratic anisotropic yield
functions can be found in Barlat et al [5] and
Banabic [6]).To obtain new yield functions, Vegter
et al [7] have directly used the test results and
Bezier's interpolation. The Casteljau’s graphical
procedure and the biaxial anisotropy coefficient
(an index introduced, independently, by Barlat et al
[2] and Pöhlandt, Banabic, Lange [8])) has been
used by Pöhlandt, Banabic and Lange [9] to
improve the accuracy of yield criteria. In Banabic
et al. [1] anisotropy was introduced by means of a
linear transformation of the Cauchy stress tensor
acting on the material (a method introduced by
Karafillis and Boyce [10]). A new plane stress
yield function that describes well the anisotropic

behavior of sheet metals, in particular, aluminum
alloy sheets was proposed by Barlat et al [2]. The
anisotropy was introduced in the formulation using
two linear transformations associated to two
different isotropic yield functions. An alternate
method to extend any isotropic yield criterion such
as to include any type of anisotropy was proposed
by Cazacu and Barlat [11]. They used
representation theorems to construct
generalizations to anisotropic conditions of the
invariants of the deviatoric stress and then
substitute these generalized invariants in the
expression of the given isotropic criterion. An
illustration of this approach was given by
extending Drucker’s [12] isotropic yield criterion
to orthotropy. In this paper, a comprehensive set
data on aluminum AA3103-0, 1.2 mm thick sheet
samples are reported. The observed anisotropy is
then modeled using three recent anisotropic yield
criteria: the Banabic et al [1], Barlat et al [2],
Cazacu and Barlat [3].
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2. RECENT YIELD CRITERIA FOR
ORTHOTROPIC SHEET METALS

2.1. BBC2000 yield criterion

A yield surface is generally described by an
implicit equation of the form:

(1)

where σ  is the equivalent stress and Y is a yield
parameter. In practice, Y may be chosen as one of
the following parameters of the sheet metal: σ0

exp

(uniaxial yield stress along the rolling direction), σ
90

exp (uniaxial yield stress along the transverse
direction), σ 45

exp (uniaxial yield stress at 45° from
the rolling direction), an average of σ 0

exp, σ 90
exp

and σ 45
exp, or σ b

exp (equi-biaxial yield stress).
Banabic et al [1], proposed the following
expression of the equivalent stress:
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where a, b, c, and k  are material parameters, while
Γ and Ψ are functions of the second and third
invariants of a transformed stress tensor s'= Lσ ,
where L is a 4th order tensor. In this formulation
anisotropy is described by means of the tensor L,
which satisfies: (i) the symmetry conditions

ijkl jikl jilk klijL L L L= = = (i, j, k , l =1…3), (ii) the
requirement of invariance with respect to the
symmetry group of the material, and (iii) the three
conditions 1 2 3 0k k kL L L+ + =  (for k = 1, 2, and
3), which ensures that s' is traceless (see Karafillis-
Boyce[10]). Hence, in the reference system
associated with the directions of orthotropy, the
tensor L has 6 non-zero components for 3 D
conditions and 4 components for plane stress state,
respectively.

Let define ( ), ,x y z , the reference frame
associated with orthotropy. For a rolled sheet, x, y,
and z represent the rolling direction, the long
transverse direction, and the short transverse
direction, respectively. In the reference system

( ), ,x y z :
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where d, e, f, and g are the four independent
components of the tensor L. The expressions of
Γ and Ψ in terms of the stress components are:

( )2 2
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Γ = σ + σ

Ψ = σ + σ + σ
(4)

where :

  ;    ;    ;  
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and  2R g=   (for more details see Banabic et al
[1]). Let us note that the expression (2) of the
equivalent stress is derived from the one proposed
by Barlat and Lian [13] for plane-stress conditions.
Two additional parameters, namely b and c, have
been introduced in order to allow a better
representation of the plastic behavior of the sheet
metal. The convexity of the yield surface described
by (2) is ensured if a Œ [0, 1] and k is a strictly
positive integer number. If θσ  is the yield stress in
uniaxial tension along an axis at orientation θ  to
the rolling direction x, it follows that:
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where:
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According to  this criterion, the equibiaxial yield
stress is:

( ) ( )
( )( )

1
2 2 2

21 2

b
k k k

b b b b

k
b

Y

a bA cB a bA cB

a cB

σ =
 + + − +
 
 + − 

(6)

( ) 0:, =−σ=σΦ YY



Anisotropic yield criteria for sheet metals3

3

where:

,b bA M N B P Q= + = +

The coefficient of plastic anisotropy associated
to a direction inclined at an angle θ Œ [0, 90°] with
the rolling direction is predicted as follows:

1

xx yy

xx yy

Yrθ

θ

= −
  ∂Φ ∂Γ ∂Γ+ +   ∂Γ ∂σ ∂σ  σ  

 ∂Φ ∂Ψ ∂Ψ + +   ∂Ψ ∂σ ∂σ   

(7)

The shape of the yield surface is defined by the
material parameters a, b, c, d, e, f, g, and k . Among
these parameters, k  has a distinct status. More
precisely, its value is set in accordance with the
crystallographic structure of the material [14]: k  =
3 for BCC alloys, and k = 4 for FCC alloys. The
other 7 parameters are determined such that the
model reproduces as well as possible the following
experimental characteristics of the orthotropic
sheet metal: σ 0

exp, σ 90
exp, σ 45

exp, σ b
exp, r0

exp,
r90

exp and r45
exp. It is possible to obtain their values

by solving a set of seven non-linear equations.
However, this set of equations have multiple
solutions. We have concluded that the best solution
is to avoid the strict enforcement of the restrictions
mentioned above. A more effective strategy of
identification is to impose the minimization of the
following error function:
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(8)

where 0 90 45 b 0 90 45, , , , ,  and r r rσ σ σ σ are the uniaxial
yield stresses, the equi-biaxial yield stress and the
coefficients of plastic anisotropy predicted by the
constitutive equation.

Eqns (5) to (7) are used in order to evaluate the
quantities involved in the error function F. For the
numerical minimization, the downhill simplex
method proposed by Nelder and Mead [15] has
been adopted because it does not need the
evaluation of the gradients.

2.2 Barlat 2000-2d yield criterion

In general, a yield function written in terms of
the deviatoric stress tensor fulfills the pressure
independence condition. Therefore, another linear
transformation could be:

=X C.s (9)

where s is the deviatoric stress tensor and X the
linearly transformed stress tensor. Since there are 5
independent deviatoric stress components, the most
general linear transformation from a five-
dimensional space to a six-dimensional space,
assuming orthotropic symmetry, with axes x, y and
z, can be written as:
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 (10)
with no conditions on the ijC  [2]. This gives 9
independent coefficients for the general case and 7
for plane stress. However, applied to plane stress
conditions, only one coefficient (C66) is available
to account for σ45 and r45. As pointed out in Barlat
et al [2] additional coefficients in the context of
linear transformations can be obtained by using
two transformations associated to two different
isotropic yield functions, respectively. A plane
stress state can be described by two principal
values only, say 1s and 2s . The expressions of the
two isotropic yield functions considered in Barlat
et al [2] are:

1 2

2 1 2 22 2

a

a a

s s

s s s s

′φ = −

′′φ = + + +
(11)

The resulting anisotropic yield function, Φ , is
thus given by

( ) ( ) aXX σ2=′′Φ ′′+′Φ′=Φ (12)

whereσ  is the effective stress, a is a material
coefficient and:

′ ′ ′ ′
′′ ′′ ′′ ′′

X = C . s C.T. L.
X = C . s = C . T . = L .

ó ó
ó ó

= = (13)
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with :
2 3 1 3 0
1 3 2 3 0
0 0 1

− 
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T ,

C ′  and C ′′ being the linear transformations. In the
reference frame associated with the material
symmetry, and :
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The principal values of ′X  and ′′X  are:

X C s C T L
X C s C T L

′ ′ ′ ′= ⋅ = ⋅ ⋅ σ = ⋅σ
′′ ′′ ′′ ′′= ⋅ = ⋅ ⋅ σ = ⋅ σ

(15)

with the appropriate indices (prime and double
prime) for each stress. The anisotropic yield
function is given by (12) where:
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(16)

It reduces to the isotropic expression when the
matrices ′C  and ′′C  are both taken as the identity
matrix so that ′ ′′X = X = s .  Because ¢f  depends
on ¢ - ¢X X1 2 , only three coefficients are
independent in ′C . In Barlat et al. [2], the
condition ¢ = ¢ =C C1 2 2 1 0  is imposed, but it is
worth noting that 12112 =′=′ CC  is an acceptable
condition that leads to ′X = ó  if 22211 =′=′ CC .
For convenience in the calculation of the
anisotropy parameters, the coefficients of ′L  and

′′L  are expressed as follows
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(17)

where all the independent coefficients ak  (for k
from 1 to 8) reduce to 1 in the isotropic case.

The coefficients ak  for k = 1…6 can be
determined using as input the values of the uniaxial
tension along the rolling and the transverse
directions, and the balanced biaxial stress state and

br , where br  defines the slope of the yield surface
at the balanced biaxial stress state ( b yy xxr = ε ε& & ).
Uniaxial tension tests loaded at 45° to the rolling
direction give two data points, 45σ = σ  and 45r r=
from which 7α  and 8α  can be computed.

2.3 Cazacu-Barlat yield criterion

Characterization of the plastic response requires
the specification of yield function and a flow rule
by which the subsequent inelastic deformations can
be calculated for specified loadings and
displacements. Assuming that yielding is
insensitive to hydrostatic pressure, for an isotropic
material the yield function depends on stress
through 2

2 / 2J tr= S  and  3 / 3J tr= 3S  , the
second and third invariants of the stress deviator S,
respectively. To introduce orthotropy in the
expression of an isotropic criterion, Cazacu and
Barlat [3] proposed generalizations of the
invariants of the stress deviator. The generalization
of 3J  was required to be a homogeneous function

of degree three in stresses that reduces to 3J  for
isotropic conditions, is insensitive to pressure, and
is invariant to any transformation belonging to the
symmetry group of the material. Similarly, the
generalization of 2J  was required to be a
homogeneous function of degree two in stresses
that reduces to 2J  for isotropic conditions, is
insensitive to pressure, and is invariant to any
transformation belonging to the symmetry group of

the material. Hence, relative to ( ), ,x y z , 
oJ 3 , the

generalization of 3J , must be of the form (see
Cazacu and Barlat [11]):
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where the coefficients kb   ( k = 1…11) reduce to unity for isotropic conditions. Similarly, 2
oJ , the

generalization of 2J , is expressed relative to ( ), ,x y z  as:

( ) ( ) ( )2 2 2 2 2 231 2
2 4 5 66 6 6
o

x y y z x z xy xz yz
aa aJ a a a= − + − + − + + +σ σ σ σ σ σ σ σ σ (19)

where the coefficients ka  ( k  = 1…6) reduce to unity in the isotropic case. Note that 0
2J  is Hill’s [4]

quadratic yield function. Using these generalized invariants any isotropic yield criterion can be extended
such as to describe orthotropy. In Cazacu and Barlat [11] , this approach was used to extend Drucker’s [12]
isotropic yield criterion:

22
3

3
2 kJcJf =−= (20)

where c and k are constant. Hence, the expression of the proposed orthotropic criterion is:

( ) ( )3 2 2
2 3 .O o of J c J k= − = (21)

For 3-D stress conditions the criterion involves 18 material parameters. In the case of a sheet, where the only
non-zero stress components are the in-plane stresses ( ), ,x y xyσ σ σ , the criterion may be written as:

( ) ( )

( ) ( ) ( )

( )

3
2 2 21

2 1 3 1 2 4

2
3 3

1 2 3 4 1 4
2

2
5 10 5

1 1
6 3 6

1 1 1
27 27 9     .

1 2
3

O
x x y y xy

x y x y x y

xy x y

af a a a a a

b b b b b b
c k

b b b

 ≡ + − + + + −  

 + + + − + −  − = 
  − − −   

σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ

(22)

If θσ  is the yield stress in uniaxial tension along an axis at orientation θ  to the rolling direction x, it follows
that:
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( ) ( ) ( )

( ) ( )

( )
( )

1 / 63
4 2 2 4

1 3 4 1 1 2

21
6 63

1 2 3 4

2
1 5 10 2 2

2
4 5

1 1cos /3cos sin sin
6 6

1 1cos sin
27 27

3 6 cos1 sin cos
9 3 sin

a a a a a a

b b b bk

c b b b

b b

−
  + + − + + −    
   + + + −=   
  −  + − + 

−   
+ −      

θ

θ θ θ θ

θ θσ

θ
θ θ

θ

(23)

Yielding under equibiaxial tension occurs when xσ  and  yσ  are both equal to:
1

3 2 61
2 3 1 2 3 43 2 2

6 27b
a a b b b bk c

−
 + − + + −   = −    
     

σ (24)

Yielding under pure shear parallel to the orthotropic axes occurs when xyσ  is equal to:

( )
11

3 2
4k aτ −

= (25)

The 10 anisotropy coefficients and the value of c can be determined from the measured uniaxial yield
stresses θσ  and strain ratios rθ  in 5 different orientations and bσ , the value of the equibiaxial tensile stress
(see more details in [3]).

3. EXPERIMENTAL INVESTIGATION

By varying the longitudinal and transverse
force acting on a cross tensile specimen (see Figure
1) any point of the yield locus in the range of
biaxial tensile stress can be obtained. A description
of the cross tensile specimen, which has been
optimised by means of stress optical methods such
as to obtain a zone of homogeneous stress can be
found in  Kreissig [16].

Fig.1  Cruciform specimen for the biaxial tensile test

Starting from this geometry, a further
optimization was carried out [17] whereby, besides
a zone of homogeneous stress, a large strain is
obtained before instability occurs in the notches.
For this purpose, the geometrical parameters
shown in Figure 1 were varied. Since the optimum
geometry depends to some extent on the material
properties, it was verified by stress optical
experiments that for the dimensions used there is a
large zone of homogeneous biaxial stress [17]. The
problem of the „equivalent cross section“ of the
specimen, i.e. the cross section by which the acting
force has to be divided for obtaining the true stress
has also been addressed in [17]. It was shown that
a good accuracy in the determination of the yield
loci of materials in the initial state without pre-
straining can be achieved by using the nominal
cross section from the workshop drawing.

In this paper, we report the results of a series of
biaxial tensile tests carried out on an aluminium
alloy sheet metal AA3103-0, 1.2 mm thickness
using a CNC stretch-drawing facility designed and
built at the Institute for Metal Forming
Technology, Stuttgart University (Figure 2).
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Fig. 2  Cruciform specimen and the temperature measurement
device

The beginning of plastic yielding was
monitored by temperature measurements using the
method of Sallat [18]. The temperature of the
specimen was measured by an infrared thermo-
couple positioned at an optimized distance from
the specimen. During elastic straining, the
specimen's temperature decreases by a fraction of a
degree due to thermo-elastic cooling. When plastic
flow begins, the temperature rises strongly – as it
can be seen in Figure 3.

Fig.3. Temperature vs. elongation obtained for standard tensile
test specimen [17]

At difference with the definition of the
yield point given in standards, the definition based
on the minimum of the temperature vs. elongation
has the advantage of ruling out any arbitrariness. In
general, the values of the yield stresses obtained
with this method are larger than the values
obtained using the classical method, i.e. stress
gauges measurements. The yield limits

corresponding to seven different ratios of the
applied stresses: 1:0, 4:1, 2:1, 1:1, 1:2, 1:4, 0:1
were measured. All these points are in the first
quadrant.

The experimental values used as input data
for the numerical identification of the material
parameters involved in the expression of the
Banabic et al.[1], Barlat et al.[2] and Cazacu-Barlat
[3] yield criteria are [19, 20]: σ 0=55 MPa,
σ 30=56 MPa, σ 45=58 MPa, σ 75=61 MPa, σ 90=
61 MPa, σ b=60 MPa, r0=0.639, r30=0.555,
r45=0.513, r75=0.581and r90=0.605. All the other
experimental points were used for validation
purposes. Table 1 shows the values of the
coefficients involved in the Banabic et al.[1],
Barlat et al.[2] and Cazacu-Barlat [3] yield
functions.

Table 1. Coefficients used in the BBC2000, Barlat 2000-2d
and Cazacu-Barlat yield criteria

4. COMPARISON WITH EXPERIMENTS

The yield surfaces predicted by the yield
criteria described in the §2 for the AA3103-0 sheet
metal are presented in Figure 4.

The experimental data obtained at Institute for
Metal Forming Technology are also plotted on the
diagrams. A very good agreement has been found
between predicted and experimental yield loci for
all tested yield criteria. The predicted distribution
of the uniaxial yield stress and the r-ratios with
respect to the angle with the rolling direction are
shown in Figures 5 and 6, respectively. A very
good agreement has been found between predicted
and experimental distribution of the r-ratio for all
tested yield criteria. A better prediction of the
uniaxial yield stress distribution has been found by
using Barlat 200-2d and Cazacu-Barlat yield
criteria (the deviations between theory and

BBC2000 Barlat 2000-2d Cazacu-Barlat

A
b
c

M
N
P
Q
R

0.786
0.750
0.408
0.574
0.582
1.239
-1.243
5.692

α1

α2

α3

α4

α5

α6

α7

α8

1.056989
0.755749
0.907686
0.928370
0.972375
0.789798
0.882467
1.065600

a1
a2
a3
a4
b1
b2
b3
b4
b5
b6
c

0.060
0.600
0.872
0.268
0.174
-1.247
-0.706
0.192
-0.164
-0.170
1.400
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experiments are ~3% by using BBC2000 yield
criterion). In [21] it was found that the BBC2000
yield criterion was capable of reproducing the
general trend of the anisotropic behaviour of the
steel sheets with different r-values too.

σσx /s 0

-1,5 -1,0 -0,5 0,0 0,5 1,0 1,5

s
y 

/s
0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

experiments 
Cazacu-Barlat 
BBC2000
Barlat2000-2d

Figure 4. Experimental and theoretical yield loci for
AA3103-0 aluminium alloy
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Figure 5. Distribution of the uniaxial yield stress

Angle f rom the ro l l ing d i rect ion [°]

0 15 30 45 60 75 90

r

0,500

0,525

0,550

0,575

0,600

0,625

0,650

experiments
Cazacu-Barlat
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Figure 6. Distribution of the r ratios

CONCLUSIONS

The anisotropic plastic behaviour of AA3103-0
aluminium alloy was modelled using the
phenomenological description proposed by
Banabic et al. (BBC2000) [1], Barlat et al.
(Barlat2000-2d) [2] and the yield criterion
developed by Cazacu and Barlat [3]. In BBC2000
and Barlat2000-2d the anisotropy is introduced by
a means of a linear transformation of the Cauchy
stress tensor applied to the material whereas
Cazacu and Barlat approach is based on
representation theorems of tensor functions.
Biaxial tensile deformation tests were carried out
on cruciform specimens using a CNC stretch-
drawing facility. The beginning of plastic yield
was monitored by temperature measurements.
Comparison with data show that the tested criteria
can successfully describe anisotropic behaviour of
AA3103-0 aluminium sheets.
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