THE EDGE VERSION OF GEOMETRICARITHMETIC INDEX OF BENZENOID GRAPH

MOHAMMAD REZA FARAHANI
${ }^{1}$ Department of Applied Mathematics, Iran University of Science and Technology (IUST)
Narmak, Tehran, Iran
Corresponding author: Mohammad Reza FARAHANI, E-mail: Mr_Farahani@Mathdep.iust.ac.ir

Received April 7, 2013

Abstract

The edge version of geometric-arithmetic index of graphs is introduced based on the end vertex degrees of edges of their line graphs; where the line graph $L(G)$ of a graph G is defined to be the graph whose vertices are the edges of G , with two vertices being adjacent if the corresponding edges share a vertex in G. In this paper, formulas for calculating the above topological descriptors in Benzenoid Hk families are given.

Key words: Molecular graph, Benzenoid, Geometric-arithmetic index, Line graph, Degree (of a vertex).

INTRODUCTION

Let G is an arbitrary simple connected graph, with the vertex set $V(G)$ and edge set $E(G)$. In chemical graphs, the vertices of the graph correspond to the atoms of molecules while the edges represent chemical bonds ${ }^{9,11,14}$. Numbers encoding certain structural features of organic molecules and derived from the corresponding molecular graph, are called graph invariants or more commonly topological indices.

Topological indices have some applications in theoretical chemistry, especially in $Q S P R / Q S A R$ research ${ }^{11}$. The oldest topological index which introduced by the chemist Harold Wiener in 1947 is ordinary (vertex) version of Wiener index ${ }^{14}$ and defined as the sum of topological distances $d(u, v)$ between any two atoms in the molecular graph G. Also, the edge versions of Wiener index which were based on distance between edges introduced by Iranmanesh et al. in 2008^{5}. These topological indices are formulated as follow:

$$
W_{v}(G)=\sum_{\{u, v\} \in V_{(G)}} d(u, v)
$$

$$
W_{e}(G)=\sum_{\{e, f\} \in E(G)} d(e, f)
$$

An important topological index introduced more than thirty years ago by Milan Randic ${ }^{9}$ is the branching index and defined as the sum of certain bond contributions calculated from the vertex degree of the hydrogen suppressed molecular graphs.

In 2009, D. Vukičević and B. Furtula ${ }^{12}$ introduced a topological index named the GeometricArithmetic index $G A(G)$

$$
G A(G)=\sum_{e=u \cup \in(G)} \frac{2 \sqrt{d_{u} d_{v}}}{d_{u}+d_{v}}
$$

where d_{u} denotes the degree of the vertex u in G. The reader can find more information about the geometric-arithmetic index in ${ }^{4,12,15}$.

Recently, A. Iranmanesh et al introduced ${ }^{8}$ the edge version of geometric-arithmetic index on the ground of the end-vertex degree d_{e} and d_{f} of edges e and f in a line graph of G as follows

$$
G A_{e}(G)=\sum_{e f \in E(L(G))} \frac{2 \sqrt{d_{e} d_{f}}}{d_{e}+d_{f}}
$$

where the line graph $L(G)$ of a graph G is defined to be the graph whose vertices are the edges of G, with two vertices being adjacent if the corresponding edges share a vertex in G.

In this paper, we focus our attention to the edge version of geometric-arithmetic index and obtain a closed formula of this index for a famous molecular graph that is Circumcoronene Series of Benzenoid H_{k}.

METHODS

In this section, we persent a computational method and by this method we can compute the edge $G A$ index of Benzenoid H_{k} that k is positive integer number. Circumcoronene Homologous Series of Benzenoid is a family of molecular graphs, which are generalizations of benzene molecule and the Benzene molecule is a usual molecule in chemistry, physics and nano sciences and is very useful to synthesize aromatic compounds. In Figure 1, the general form of circumcoronene series of benzenoid is shown. For more information of benzenoid families, see the paper series ${ }^{1,2,6,7,10,13,16}$. Also, reader can see the vertex version of geometric-arithmetic index of H_{k} is equal to ${ }^{3}$:

$$
G A\left(H_{k}\right)=9 k^{2}+\left(\frac{24 \sqrt{6}}{5}-15\right) k+\left(12-\frac{24 \sqrt{6}}{5}\right)
$$

Now, we have following theorem for $G A_{e}$ index of Benzenoid H_{k}, that is the main results in this paper.

Theorem 2.1. For the graphs from the circumcoronene series of benzenoid $H_{k} \forall k \geq 1$.

$$
G A_{e}\left(H_{k}\right)=6 k^{2}(3 k-4)+\frac{48 \sqrt{k-1}}{7}+\frac{24 \sqrt{6}}{5}
$$

Firstly, by introduce the following definition, we category the vertex set and edge set of a molecular graph G as follow.

Fig. 1. The Circumcoronene Series of Benzenoid $H_{k} \forall k \geq 1$ with edges marking.

Fig. 2. The general representation of line graph of Circumcoronene Series of Benzenoid $H_{k}(k \geq 1)$ with edges marking.

Definition 2.2. Let G be the molecular graph and d_{v} is degree of vertex $v \in \mathrm{~V}(\mathrm{G})$ (Obviously $1 \leq \delta \leq d_{v} \leq \Delta \leq n-1$, such that $\delta=\operatorname{Min}\left\{d_{v} \mid v \in \mathrm{~V}(\mathrm{G})\right\}$ and $\left.\Delta=\operatorname{Max}\left\{d_{v} \mid v \in \mathrm{~V}(\mathrm{G})\right\}\right)$. We divide edge set $E(G)$ and vertex set $V(G)$ of graph G to several partitions, as follow:
$\forall k, \delta^{2} \leq k \leq \Delta^{2}, V_{k}=\left\{v \in V(G) \mid d_{u}=k\right\}$.
$\forall j, \delta^{2} \leq j \leq \Delta^{2}, E_{j}=\left\{e=u v \in E(G) \mid d_{u} \times d_{v}=j\right\}$
$\forall i, 2 \delta \leq i \leq 2 \Delta, E_{i}=\left\{e=u v \in E(G) \mid d_{u}+d_{v}=i\right\}$
It's clear that we have two partitions $V_{3}=\left\{v \in V\left(H_{k}\right) \mid d_{v}=3\right\}$ and $V_{2}=\left\{v \in \mathrm{~V}\left(H_{k}\right) \mid d_{v}=2\right\}$ for circumcoronene series of benzenoid $H_{k}(k \geq 1)$ with size $6 k(k-1)$ and $6 k$, respectively. Obviously, there are three edge sets E_{4}, E_{5} and E_{6} as follow:

$$
\begin{aligned}
& E_{4}=\left\{e=u v \in E(G) \mid d_{u}=d_{v}=2\right\} \Rightarrow\left|E_{4}\right|=6 \\
& E_{5}=\left\{e=u v \in E(G) \mid d_{u}=2, d_{v}=3\right\} \Rightarrow\left|E_{5}\right|=12(k-1) \\
& E_{6}=\left\{e=u v \in E(G) \mid d_{u}=d_{v}=3\right\} \Rightarrow\left|E_{6}\right|=9 k^{2}-15 k+6
\end{aligned}
$$

We mark all edges belong to E_{4} by red color, all edges belong to E_{5} by green color and all edges of E_{6} by black color in Figure 1, respectively.

Alternatively, we have three partitions $V_{4}=\left\{v \in V\left(L\left(H_{k}\right)\right)\right.$ ore $\left.\in E\left(H_{k}\right) \mid d_{e}=4\right\}, \quad V_{3}=\left\{\mathrm{e} \in E\left(H_{k}\right) \mid d_{e}=3\right\} \quad$ and $L_{2}=\left\{e \in E\left(H_{k}\right) \mid d_{e}=2\right\}$ for line graph of Circumcoronene series of benzenoid $H_{k}(k \geq 1)$. It's Obvious that these three vertex sets are equivalent respectively with three edge partitions E_{4}, E_{5} and E_{6}.

On the other hands, we conclude $\left|V\left(L\left(H_{k}\right)\right)\right|=9 k^{2}-3 k$ from definition of line graph clearly and obtain

$$
\left|E\left(L\left(H_{k}\right)\right)\right|=\frac{4\left(9 k^{2}-15 k+6\right)+3 \times 12(k-1)+2 \times 6}{2}=18 k^{2}-12 k .
$$

Now, consider the general representation of line graph of circumcoronene series of benzenoid in Figure 2. Thus, there exit four partitions $E L_{i}$ for $i=5, \ldots, 8$ as follow.

$$
\begin{aligned}
& E L_{5}=\left\{\mu=e f \in E\left(L\left(H_{k}\right)\right) \mid d_{e}=2, d_{f}=3\right\} \\
\Rightarrow & \left|E L_{5}\right|=2\left|V L_{2}\right|=12
\end{aligned}
$$

$$
\begin{gathered}
E L_{6}=\left\{\mu=e f \in E\left(L\left(H_{k}\right)\right) \mid d_{e}=d_{f}=3\right\} \\
\Rightarrow\left|E L_{6}\right|=\left|V L_{3}\right|-\left|V L_{2}\right|=6(2 k-3) \\
E L_{7}=\left\{\mu=e f \in E\left(L\left(H_{k}\right)\right) \mid d_{e}=3, d_{f}=4\right\} \\
\Rightarrow\left|E L_{6}\right|=\left|V L_{3}\right|=12(k-1) \\
E L_{8}=\left\{\mu=e f \in E\left(L\left(H_{k}\right)\right) \mid d_{e}=d_{f}=4\right\} \\
\Rightarrow\left|E L_{8}\right|=\left|E\left(L\left(H_{k}\right)\right)\right|-\left|E L_{7}\right|-\left|E L_{6}\right|-\left|E L_{5}\right| \\
=18 k^{2}-36 k+18=18(k-1)^{2} .
\end{gathered}
$$

Example 2.3. The edge GA index of benzenoid H_{3} is

$$
G A_{e}\left(H_{3}\right)=G A\left(L\left(H_{3}\right)\right)=\frac{24 \sqrt{6}}{5}+\frac{96 \sqrt{3}}{7}+90=125.5114 .
$$

Proof. Consider the Circumcoronene H_{3} and line graph of Circumcoronene $L\left(H_{3}\right)$ that shown in Figure 3. The number of edges of line graph of H_{3} is 126 . The number of edges e_{5}, e_{6} and e_{7} in line graph H_{3} are equal to 12,18, 24 which belong to $E L_{5}, E L_{6}$ and $E L_{7}$, respectively. Also, the number of other edges which have the vertices with degrees 4 in $L\left(H_{3}\right)$ is 72 . We mark all members of $E L_{5}, E L_{6}, E L_{7}$ and $E L_{8}$ by red, green, blue and black color in Figure 3, respectively. Therefore, the desire result can be concluded.

RESULTS AND DISCUSSIONS

By using above mentions in the above section (Section 2. The method), we can compute the edge vertion of geometric-arithmetic index of Circumcoronene Homologous Series of Benzenoid H_{k} that k is positive integer number. Thus, we have the desire result can be concluded and we will prove the main theorem (Theorem 2.1) of this work as follow.

Fig. 3. The representation of Circumcoronene H_{3} and its line graph $\left[L\left(H_{3}\right)\right]$.

Proof of Theorem 2.1. Consider the general case of Circumcoronene series of Benzenoid H_{k} for every integer number k. This molecular graph have $n_{k}=6 k^{2}$ vertices and $m_{k}=9 k^{2}-3 k$ edges. By refer to definition of line graph of a graph G, we can compute the edge version of geometric-arithmetic index of H_{k} as follow. Of course by using the above argument, it's clear that $G A_{e}(G)$ is equivalent with geometric-arithmetic index of line graph of G. Thus,

$$
\begin{aligned}
& G A_{e}\left(H_{k}\right)=\sum_{e f \in E\left(L\left(H_{k}\right)\right)} \frac{2 d_{e} d_{f}}{\sqrt{d_{e}+d_{f}}} \\
& =\sum_{e f \in E L_{5}} \frac{2 \sqrt{3 \times 2}}{3+2}+\sum_{e f \in E L_{6}} \frac{2 \sqrt{3 \times 3}}{3+3} \\
& +\sum_{e f \in E L_{7}} \frac{2 \sqrt{4 \times 3}}{4+3}+\sum_{e f \in E L_{8}} \frac{2 \sqrt{4 \times 4}}{4+4} \\
& =\sum_{e f \in E L_{5}} \frac{2 \sqrt{6}}{5}+\sum_{e f \in E L_{6}} 1+\sum_{e f \in E L_{7}} \frac{4 \sqrt{3}}{7}+\sum_{e f \in E L_{8}} 1 \\
& =12 \times \frac{2 \sqrt{6}}{5}+6(2 k-3) \\
& +12(k-1) \times \frac{4 \sqrt{3}}{7}+18(k-1)^{2} \\
& =6 k^{2}(3 k-4)+\frac{48 \sqrt{k-1}}{7}+\frac{24 \sqrt{6}}{5} .
\end{aligned}
$$

Here, proof of 2.1 Theorem is completed.

CONCLUSIONS

In Theoretical Chemistry, the topological indices and molecular structure descriptors are used for modeling physico-chemical, toxicologic, biological and other properties of chemical compounds and nano steucture analizing.

In this paper, we were counting one of new connectivity indices of the line graph of molecular graph Circumcoronene series of Benzenoids. This new topological connectivity index is useful to surveying the structure of molecular graphs, which called in molecular graphs. The edge version of geometric-arithmetic index recently introduced by A. Iranmanesh et al. on the ground of the endvertex degree d_{e} and d_{f} of edges e and f in a line graph of G, where the line graph $L(G)$ of a graph G is defined to be the graph whose vertices are the edges of G, with two vertices being adjacent if the corresponding edges share a vertex in G.

REFERENCES

1. V. Chepoi S. Klavžar, Distances in benzenoid systems: Further developments. Discrete Math. 192, 27-39 (1998).
2. M.V. Diudea, Studia Univ. Babes-Bolyai, Chemi. 4, 3-21 (2003).
3. M.R. Farahani, Computing some Connectivity index of Circumcoronene Series of Benzenoid. Submitted for publication. (2012).
4. Gh. Fath-Tabar, B. Furtula and I. Gutman, J. Math. Chem. 47, 477 (2010).
5. A. Iranmanesh, I. Gutman, O. Khormali and A. Mahmiani, MATCH Commun. Math. Comput. Chem. 61(3). 663 (2009).
6. S. Klavžar, I. Gutman and B. Mohar, Labeling of Benzenoid Systems which Reflects the Vertex-Distance Relations. J. Chem. Int Comput. Sci. 35, 590-593 (1995).
7. S. Klavžar, A Bird's Eye View of the Cut Method and A Survey of Its Applications In Chemical Graph Theory. MATCH Commun. Math. Comput. Chem. 60, 255-274 (2008).
8. A. Mahmiani, O. Khormali and A. Iranmanesh, On the Edge Version of Geometric-Arithmetic Index, Digest J. Nanomate, Bios. 7(2). 411-414 (2012).
9. M. Randic, J. Amer. Chem. Soc. 97, 6609-6615 (1975).
10. A. Soncini, E. Steiner, P.W. Fowler, R.W.A. Havenith, and L.W. Jenneskens, Perimeter Effects on Ring Currents in Polycyclic Aromatic Hydrocarbons: Circumcoronene
and Two Hexabenzocoronenes. Chem. Eur. J. 9, 29742981 (2003).
11. R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Weinheim, Wiley-VCH (2000).
12. D. Vukičević and B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of endvertex degrees of edges. J. Math. Chem. 46, 369 (2009).
13. D. Vukičević, N. Trinajstić, Wiener Indices of Benzenoid Graphs. Bull. Chem. Technol. Macedonia, 23(2), pp. 113-129 (2004)
14. H. Wiener, J. Amer. Chem. Soc. 69, 7-20 (1947).
15. Y. Yuan, B. Zhou and N. Trinajstić, J. Math. Chem. 47, 833 (2010).
16. P. Zigert, S. Klavžar and I. Gutman, Calculating the hyper-Wiener Index of benzenoid hydrocarbons, ACH Models Chem. 137, 83-94 (2000).
